一般社団法人
日本化学物質安全・情報センター

SIDS in HPV programme & CCAP
SIAM 18, 20/04/2004

初期評価プロファイル（SIAP）
1,2-ジクロロ-4-ニトロベンゼン

物質名：1,2-Dichloro-4-nitrobenzene
化学式：C₆H₃Cl₂NO₂
CAS No.：99-54-7

SIAR 結論の要旨
ヒトの健康
1,2-ジクロロ-4-ニトロベンゼンは胃腸管から吸収され、入手できるデータから実験動物においていく分のかの種差が認められるが、1,2-ジクロロ-4-ニトロベンゼンはメルカプツール酸誘導体のN-アセチル-S-(2-クロロ-4-ニトリフェニル)-L-システインの形で主に尿から排泄されると結論することができる。ヒトに関するデータは入手可能な文献からは確認されなかった。

有効な急性吸入試験は得られない。ラット経皮LD₅₀は>2000 mg/kg体重である。ウサギLD₅₀は導き出せなかったが、LD₃₀（最低致死用量）は950 mg/kg体重であった。ラットの急性経口毒性は625から950 mg/kg体重の範囲である。

1,2-ジクロロ-4-ニトロベンゼンはメトヘモグロビンの形成を引き起こす。中毒の主要な兆候は傾眠、衰弱の増加、虚脱、並びに昏睡であった。

1,2-ジクロロ-4-ニトロベンゼンはOECD TG 404の準閉塞4時間ばく露試験では、皮膚刺激性を示さなかったが、連邦公報38 No. 187の方法に従った閉塞状態のばく露試験では72時間以内に消失するわずかな刺激性を示した。

OECD TG 405の試験では、眼にわずかな刺激性がある。
OECD TG 406の試験では、皮膚感作性は誘発されなかった。更に、1,2-ジクロロ-4-ニトロベンゼンは限られた1件の試験において、ヒト皮膚感作性を誘発しなかった。

吸入ばく露と同様に反復経口投与後の動物試験で同定された主な標的は血液系であり、更に、経口ばく露の腎臓及び吸入ばく露の肝臓である。

OECD TG 407に従った28日の経口ばく露試験から、4 mg/kg体重/日のNOAEL（無害限界露）が得られた。
制限のある有効性（限定的根拠資料）の亜慢性吸入毒性試験後のNOAELは0.4 mg/m³（4時間/日）であった。

血液学的パラメーター（例えば、メトヘモグロビン血症、ハインツ小体）における変化は、作業者ばく露に関する唯一の入手可能な報告書における主要な標的である。これらの所見は混合ばく露に関係しているので、それらは明白に1,2-ジクロロ-4-ニトロベンゼンが原因とはできないが、妥当性があるだろう。なぜなら、それらも動物実験で観察されたからである。

ヒトの中毒に関する最近の公表文献は確認できない。

1,2-ジクロロ-4-ニトロベンゼンはSalmonella typhimuriumで変異原性活性を示すが、チャイニーズハムス
一般社団法人 日本化学物質安全・情報センター

ター卵巣（CHO）細胞の HPRT 試験では変異原性を示さない。
1,2-ジクロロ-4-ニトロベンゼンは細胞毒性がある最高濃度で、代謝活性化系で V79 細胞に染色体異常を誘発した。昆虫（キイロショウジョウバエ）において、1,2-ジクロロ-4-ニトロベンゼンは、わずかな毒性の増加を伴う3日間以上の曝露による SLRL 試験では変異原活性がないことを明らかにした。しかし、明確な毒性用量の一回腹腔内注射後に変異原活性を示した。
1,2-ジクロロ-4-ニトロベンゼンはラットを用いた染色体異常試験（in vivo）で染色体異常誘発を示さなかった。
全体として、毒性を示さない用量の試験条件で、in vivo 遺伝毒性の証拠はなかった。
特别に生殖毒性を扱った試験は確認されなかった。
1,2-ジクロロ-4-ニトロベンゼンのラット亜急性試験は最高耐容用量 100 mg/kg 体重までに明白な全身毒性が示されたにもかかわらず、生殖器官の損傷を生じなかった。
1,2-ジクロロ-4-ニトロベンゼンの商業グレード（85％の1,2-ジクロロ-4-ニトロベンゼン及び15％の1,2-ジクロロ-3-ニトロベンゼン）は、母獣毒性用量で発生影響を引き起こした。恐らく母獣及び胎仔におけるメトヘモグロビン血症のためであろう。
変異（尿管拡張）に対する有意な用量-反応傾向が>=30 mg/kg 体重/日群の胎仔で見られ、妊娠6-10日に30 mg/kg 体重/日の用量レベルで母獣の有意な体重増加抑制があり、100 mg/kg 体重/日に更に強い影響があった。
このように10 mg/kg 体重/日は母獣毒性及び発生毒性の NOAEL と決定された。
環境1,2-ジクロロ-4-ニトロベンゼンは融点 43 ℃、沸点 255 ℃、引火点 155 ℃、並びに発火点 420 ℃の黄色い物質である。
1,2-ジクロロ-4-ニトロベンゼンの密度は1.56g/m3（15 ℃）、1.487g/m3（50 ℃）であり、水よりも重い。本物質は121 mg/L（20 ℃）とわずかに水に溶解する。蒸気圧は2Pa（25 ℃）と特定され、logKow = 3.04（25 ℃）と測定された。
その化学構造に基づき、1,2-ジクロロ-4-ニトロベンゼンは環境下で加水分解しないと予想される。
Mackay レベルⅠのフガシティーモデルに従って、1,2-ジクロロ-4-ニトロベンゼンの主な標的区分は大気（48％）及び水（44％）である。測定されたヘンリー定数 0.82Pa・m3・mol-1 は本化合物が低~中程度の地表水からの揮発性を持つことを示している。
大気中において、ゆっくりとした光分解が光化学的に生じた OH 基との反応により起こる。大気中の半減期は、大気中的濃度を0.5×106 水酸基ラジカル/m3（24 時間平均）として、321 日と推定される。
1,2-ジクロロ-4-ニトロベンゼンは環境中の UV 光吸収のために、大気中で直接光分解するだろう、しかしながらその半減期は知られていない。
水中での光分解はそれ程生じないだろう。
1,2-ジクロロ-4-ニトロベンゼンは易生分解性ではない（Manometric respirometry 試験：21日後、BOD で生分解性<10％；OECD TG301C、28日以内の生分解性0％、恐らく、微生物の阻害のためであろう）。
1,2-ジクロロ-4-ニトロベンゼンは順化微生物により好気的条件で、また非順化微生物による嫌気的条件で生分解される（一次分解）。順化した廃水処理工場からの汚泥は1,2-ジクロロ-4-ニトロベンゼンを一次分解する可能性を大いに有している（「工業廃水処理工場のシミュレーション」試験方法：3日後に100％）。

 environments

1,2-ジクロロ-4-ニトロベンゼンは融点 43 ℃、沸点 255 ℃、引火点 155 ℃、並びに発火点 420 ℃の黄色い物質である。
1,2-ジクロロ-4-ニトロベンゼンの密度は1.56g/m3（15 ℃）、1.487g/m3（50 ℃）であり、水よりも重い。本物質は121 mg/L（20 ℃）とわずかに水に溶解する。蒸気圧は2Pa（25 ℃）と特定され、logKow = 3.04（25 ℃）と測定された。
その化学構造に基づき、1,2-ジクロロ-4-ニトロベンゼンは環境下で加水分解しないと予想される。
Mackay レベルⅠのフガシティーモデルに従って、1,2-ジクロロ-4-ニトロベンゼンの主な標的区分は大気（48％）及び水（44％）である。測定されたヘンリー定数 0.82Pa・m3・mol-1 は本化合物が低~中程度の地表水からの揮発性を持つことを示している。
大気中において、ゆっくりとした光分解が光化学的に生じた OH 基との反応により起こる。大気中の半減期は、大気中の濃度を0.5×106 水酸基ラジカル/m3（24 時間平均）として、321 日と推定される。
1,2-ジクロロ-4-ニトロベンゼンは環境中の UV 光吸収のために、大気中で直接光分解するだろう、しかしながらその半減期は知られていない。
水中での光分解はそれ程生じないだろう。
1,2-ジクロロ-4-ニトロベンゼンは易生分解性ではない（Manometric respirometry 試験：21日後、BOD で生分解性<10％；OECD TG301C、28日以内の生分解性0％、恐らく、微生物の阻害のためであろう）。
1,2-ジクロロ-4-ニトロベンゼンは順化微生物により好気的条件で、また非順化微生物による嫌気的条件で生分解される（一次分解）。順化した廃水処理工場からの汚泥は1,2-ジクロロ-4-ニトロベンゼンを一次分解する可能性を大いに有している（「工業廃水処理工場のシミュレーション」試験方法：3日後に100％）。
魚で測定された生物濃縮係数は26-65の範囲であった。底質に対する測定値Koc=417は中程度の土壌蓄積性を持つことを示唆している。

水生生物種に対する1,2-ジクロロ-4-ニトロベンゼンの急性毒性は、魚、ミジンコ、並びに藻類の信頼できる実験結果が入手できる。急性毒性は魚（Leuciscus idus）3.1 mg/L（48時間LC50）〔DIN 38412 L15〕、ミジンコ（Daphnia magna）に対して3 mg/L（24時間EC50）〔DIN 384012 L11〕であった。また生長阻害試験では、藻類（Scenedesmus obliquus）に対して5.8 mg/L（48時間ErC50）〔OECD TG 201〕、藻類（Chlorella fusca）に対して0.32 mg/L（24時間ErC50）が報告された。Daphnia magna慢性（21日）試験において、0.025 mg/LのNOECが最も感受性のある毒性指標の繁殖性に対して決定された。藻類（Scenedesmus subspicatus）に対するErC10>0.1 mg/L（48時間）が報告された。陸生生物について、最低のEC50（6日間）は植物（Phaseolus aureus）の27 mg/Lであった。最低慢性毒性値25μg/L（D.magnaにおける21日間繁殖）に評価係数50を適用して、PNEC（水生）の0.5μg/Lが得られる。

2001年に約36,800トンの1,2-ジクロロ-4-ニトロベンゼンが世界中（西ヨーロッパを除く）で生産された。1,2-ジクロロ-4-ニトロベンゼンは除草剤、殺菌剤、並びに染料に更に加工される中間体の合成のための基礎的な化学物質である。1,2-ジクロロ-4-ニトロベンゼンの直接的な用途は担当国で知られていない。1,2-ジクロロ-4-ニトロベンゼンはデンマーク、フィンランド、ノルウェー、スウェーデン、あるいはスイスの製品登録簿に登録されている製品には含まれていない。

担当国において、1,2-ジクロロ-4-ニトロベンゼンは閉鎖工程で製造及び加工される。その場所から排出される濃度は2μg/Lの検出限界以下であった。ドイツにおいて1999年に、1,2-ジクロロ-4-ニトロベンゼン濃度の90パーセンタイル値はライン川で<0.5μg/L、ドナウ川で<0.02μg/Lであった。エルベ川については、最大が<0.02μg/Lであった。1,2-ジクロロ-4-ニトロベンゼンによる陸生区分の定量できない汚染は3,4-ジクロロアニリンから製造される除草剤の使用の結果かもしれない。この仮定はこのような除草剤の生分解中に、3,4-ジクロロアニリンが形成され、わずかな量が生物的または非生物的に酸化され、1,2-ジクロロ-4-ニトロベンゼンを生成するという知見に基づいている。しかしながら、これらの資源による陸生区分の重大なばく露は予想されない。

ばく露は担当国の主な製造企業の職業環境において十分に管理されており、作業者のばく露はドイツ化学工業協会（VCI）勧告の1,2-ジクロロ-4-ニトロベンゼンの作業場指導値（ARW）1mg/m3を十分下回っている。作業者の血中3,4-ジクロロ-アニリン付加物及び尿中3,4-ジクロロアニリンのレベルは許容値の5%よりも決して高くなかった（その値を超えない場合には作業者に健康影響はない）。担当国の製造及び加工工場からの1,2-ジクロロ-4-ニトロベンゼンの大気及び水系への排出は非常に低いこと、環境濃度は非常に低いこと、並びに生物蓄積可能性が低いことに基づいて、環境または食物連鎖を通じた一般大衆の重大なばく露は予想されない。

勧告本化学物質は現在のところ、追加の研究の優先度は低い。
勧告の理論的根拠、並びに勧告された追加の研究の特徴

本化学物質はヒトの健康（主に血液毒性及び発生毒性、おそらくメトヘモグロビン血症と関連がある）及び環境に有害性を示唆する。担当国により提出されたデータに基づいて、環境へのばく露は低いと予想され、職業環境におけるばく露は管理されており、消費者ばく露は生じないと思われる。よって本化学物質は現在のところ、追加の研究の優先度が低い。諸国は担当国により提出されていないばく露シナリオを調査するよう要望するかもしれない。

著作権および免責事項について

著作権

本資料の著作権は弊センターに帰属します。引用、転載、要約、複写（電子媒体への複写を含む）は著作権の侵害となりますので御注意下さい。

免責事項

本資料に掲載されている情報については、万全を期しておりますが、利用者が本情報を用いて行う一切の行為について、弊センターは何ら責任を負うものではありません。また、いかなる場合でも弊センターは、利用者が本情報を利用して被った被害、損失について、何ら責任を負いません。