一般社団法人 日本化学物質安全・情報センター

SIDS in HPV programme & CCAP
SIAM 22, 18/04/2006

初期評価プロファイル (SIAP)

カテゴリー: 長鎖アルコール類 (C6-C22)

Long Chain Alcohols (C6-22 primary aliphatic alcohols)

<table>
<thead>
<tr>
<th>化学物質名</th>
<th>CAS No.</th>
<th>化学物質名</th>
<th>CAS No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hexanol</td>
<td>11127-3</td>
<td>Alcohols, C16-C18 unsatd</td>
<td>68155-00-0</td>
</tr>
<tr>
<td>Octanol</td>
<td>11187-5</td>
<td>Alcohols, C14-C16</td>
<td>75782-86-4</td>
</tr>
<tr>
<td>Decanol</td>
<td>11230-1</td>
<td>Alcohols, C10</td>
<td>68551-07-5</td>
</tr>
<tr>
<td>Undecanol</td>
<td>11242-5</td>
<td>Alcohols, C12</td>
<td>68855-56-1</td>
</tr>
<tr>
<td>Tridecanol</td>
<td>11270-9</td>
<td>Alcohols, C14-C16</td>
<td>68333-80-2</td>
</tr>
<tr>
<td>Tetradecanol</td>
<td>11272-1</td>
<td>Alcohols, C6-C12</td>
<td>75782-87-5</td>
</tr>
<tr>
<td>Pentadecanol</td>
<td>62976-5</td>
<td>Alcohols, C12</td>
<td>68855-56-1</td>
</tr>
<tr>
<td>Hexadecanol</td>
<td>36653-82-4</td>
<td>Alcohols, C12-C13</td>
<td>75782-86-4</td>
</tr>
<tr>
<td>Eicosanol</td>
<td>62996-9</td>
<td>Alcohols, C14-C15</td>
<td>75782-87-5</td>
</tr>
<tr>
<td>Docosanol</td>
<td>66119-8</td>
<td>Alcohols, C12-C14</td>
<td>80206-82-2</td>
</tr>
</tbody>
</table>

構造式

\[\text{CH}_3(\text{CH}_2)_n\text{CH}_2\text{OH} \] 直鎖 \(n = 4 \text{ to } 20 \)

\[\text{CH}_3(\text{CH}_2)_n\text{CHCH}_2\text{OH} \] \((\text{CH}_2)_m\text{CH}_3 \) 2-アルキル基側鎖 \(n + m = 3 \text{ to } 18 \), \(m \) は主に \(0 \).

\[\text{CH}_3(\text{CH}_2)_7\text{CH=CH}(\text{CH}_2)_7\text{CH}_2\text{OH} \] 不飽和

いくつかの市販製品には、\(9\text{-Z} \) 不飽和成分が含まれる

SIAR の結論の要旨

このカテゴリーは、炭素鎖長 C6-C22 の範囲内の第一級脂肪族アルコールの一群を対照とする。上市されている製品は通常、いくつかの脂肪族アルコールを含み、様々な炭素鎖長を示す。この一群は様々
一般社団法人
日本化学物質安全・情報センター

な構成要素と様々な構造を有するアルコール類から構成される。構成要素は製造方法および原料による。ほとんどのアルコール類は直線状の炭素鎖であるが、特定の製造工程は分枝構造を作る。本カテゴリーを補完する、他の類似する物質のデータも入手可能である。担当が決まっていないアルコール類は、担当された直鎖アルコールと構造が似ているが、高生産量ではないか、または本コンソーシアムメンバーによって製造されていないのかもしれない。

本カテゴリーのメンバーが共有するキーポイント

・同じ分子構造
・同様な代謝経路
・生態毒性作用が共通の様式
・ヒトの健康に関連する影響が共通のレベルと様式

構成要素の詳細な知見に基づき、検証された曝露と影響のモデルの適用により、複数成分の反応生成物をこのカテゴリー内で考察することができる。環境エンドポイントについては、ここでは2つの方法で実施された。

読み取り：カテゴリー全般にわたる分解性のパターンから、データギャップを直接埋めて読み取りを可能にする十分なデータが入手できるので、読み取りを生分解性に適用する。藻類については、読み取りに基づく専門的評価が、関連する物質のミジンコ類および魚の実測、または推定される影響を考慮して行われた。

モデリング：当該物質の成分の典型的な溶解度モデルが作成されており、いかなる成分割合であっても、成分の溶解度および全体の溶解度を推定することを可能にする。各成分の特性の知見を用いて生態毒性影響が推定された。

ヒトの健康

製造工程を考慮すると、脂肪族アルコールを2つのサブカテゴリーに分けることができる。

・直鎖アルコール類：
偶数の炭素原子を有する、飽和または不飽和の非分岐第一級脂肪族アルコール類。

・ほとんど直鎖のアルコール類：
飽和直鎖第一級脂肪族アルコール類および、対応する炭素鎖長が飽和のモノ分岐第一級アルコール異性体類。

双方のサブカテゴリーの毒性データベースの細部にわたる評価は、直鎖アルコール類およびほとんど直鎖のアルコール類は、急性と反復曝露後に毒性が低いことを示す。皮膚と眼の刺激性エンドポイントは、それぞれのサブカテゴリー内で、炭素数の少ないカテゴリーメンバーの方が、長鎖アルコールに比して、より明確な反応を示す傾向を示す。直鎖およびほとんど直鎖のアルコール類の総合的な毒性学的プロファイルは、評価された全てのエンドポイントについて、定量的および定性的に類似している。鎖長と毒性学的特性の間にある相関性は、双方のサブカテゴリーとも同様であった。更に、脂肪族アルコールの哺乳動物代謝は非常に効率が良く、またそれぞれのサブカテゴリーについて同様に進行する。生体内変換の1段目のステップで、アルコール類は酸化されて対応するカルボン酸になり、続いてミトコンドリアのβ酸化プロセスにおいて、C2単位が段階的に除去される。モノ分岐アルコール異性体類の代謝的分解も非常に効率が良く、
一般社団法人
日本化学物質安全・情報センター

直鎖脂肪族アルコールと同じ行程を含む。側鎖の存在は、β酸化の行程を終わらせないが、場合によってはC2除去が進む可能性の前に一個の炭素が除去される。分岐の程度の違いと関連する可能性のある懸念に対処するために、および、ほとんど直鎖のアルコールのサブカテゴリー内の読み取り法の正当化ために、このカテゴリーの代理物質および補完物質が評価された。

脂肪族アルコール類は、通常の全てのばく露経路で吸収され、広く体内に分布し、効率的に排出される。親アルコール類およびそれらの生体内変換生成物の残留または生物蓄積性の可能性は限定的である。

長鎖脂肪族アルコールのカテゴリーは全体に、吸入、経口または経皮ばく露の急性毒性の程度は低い。このカテゴリーメンバーは一般的に揮発性は低く、急性致死濃度は飽和蒸気圧を超える。ほとんどの場合、急性経口および経皮のLD50値は試験の最高投与量を越え、試験プロトコルによっては、> 2000から> 10000 mg/kgの範囲である。

結論として、毒性データベースは鎖長と毒性の間の逆相関性を示す。長い鎖長の物質と比較して、短鎖長のアルコールほど、より明確な影響を生じる傾向がある。これは、実験動物での皮膚と眼の刺激性試験における刺激の程度で最も明確に顕れる。

C6-C11の範囲の脂肪族アルコールについて、組織破壊あるいは非可逆的変化の懸念を伴わずに、皮膚と眼に刺激性がある。
C12-C16の範囲の脂肪族アルコールについて、皮膚刺激性の程度は低く;鎖長C18以上のアルコール類は、皮膚に対して刺激性はない。鎖長C12以上のアルコール類の眼刺激性は僅かであることが示された。

脂肪族アルコールは皮膚感作性はない。

脂肪族アルコールの反復ばく露は、一般的に著しい全身毒性の所見はないので、このカテゴリーは反復ばく露毒性の程度は低いものと見なされる。より短鎖ほど、このカテゴリーメンバーは初回の接触部位に局所刺激を誘発する。このグループのいくつかのメンバーに観察された他の注目すべき所見は、低度の肝臓影響を伴う軽度の変化を示唆し、その変化はほとんど直鎖のアルコールの方が直鎖アルコールにおけるよりも若干明瞭であった。典型的な所見は次のものを含む:時として臨床化学的変化を伴うが、通常は組織病理学的影響の同時発生は無い、肝臓重量の若干の増加。特殊な試験が、このカテゴリーはペルオキシゾーム増殖の可能性がないことを実証した。中枢神経系(CNS)影響は吸入ばく露または摂餌投与では生じなかったが、1-ヘキサノールおよび1-オクタノールは反復大量瞬時投与(bolus)でCNS抑制の可能性を示した。同様に、1-ヘキサノールおよび1-オクタノールは反復大量瞬時投与で呼吸困難を誘発した。脂肪族アルコールは、末梢神経障害を生じる可能性はない。このカテゴリーの報告されている代表的なNOAELは、ラットでの摂餌による亜慢性投与で、約200 mg/kg/dayから1000 mg/kg/dayの範囲である。

長鎖脂肪族アルコールカテゴリーのいくつかのメンバーは、慢性皮膚塗布試験の担体または溶剤として使われた。そのような試験の妥当性には限界があるが、このカテゴリーの発がん性の証拠はなかった。長鎖脂肪族アルコール類は、DNAとの相互作用の可能性に懸念のある構造的要素を含んでおり、さらに主にAmes試験とマウス小核試験に基づき、変異原性がないことが示された。
一般社団法人
日本化学物質安全・情報センター

反復投与毒性試験および生殖影響スクリーニング試験で、生殖器官に有害性所見が無いことに基づき、このカテゴリーは生殖能および生殖毒性に有害影響を及ぼす可能性はないものと考えられる。同様に、このカテゴリーに属する物質、およびこのカテゴリー研究を補完する脂肪族アルコール類の発生毒性試験は、発生胎仔に対して有害性影響を及ぼす可能性がないことを確認した。

環境
通常の予測によれば、データの一般的傾向は炭素鎖長に伴って変化する特性を示す。炭素鎖長が増えれば、融点が高くなり、沸点が高くなり、蒸気圧が低下する;この一つの結果は、より高分子量で引火点が高くなることである。炭素鎖長が長くなるほど、水溶解度は低下し、オクタノール - 水分配係数は増大する。

記載のように、物理化学的特性は、このカテゴリーメンバー全体にわたって様々である。主要な性質の値の範囲は以下のようである:

・融点:約-50℃(ヘキサノールの測定値)～+72.5℃(ドコサノールの測定値)

・沸点:158℃(ヘキサノールの測定値)～約400℃(C18-22アルコール類の沸点測定範囲の上限値、ドコサノールの推定値により支持される)

・密度:約0.80 g/cm³～約0.85 g/cm³(カテゴリー全体にわたる測定値)

・蒸気圧:8.2E-08 hPa(ドコサノールの推定値)～1.22 hPa(ヘキサノールの測定値)

・水溶解度:約0.001 mg/L(オクタデカノールの測定値)～5900 mg/L(ヘキサノールの測定値)

・分配係数:2.03(ヘキサノールの測定値)～＞7(エイコサノールの測定値)

環境運命
信頼できる測定データは、鎖長C18までのアルコール(測定されたのは;ヘキサノール、オクタノール、デカノール、ドデカノール、テトラデカノール、ヘキサデカノール、オクタデカノール)が易生分解性であることを示す。炭素鎖長C16までのほとんどの試験は、10日間の時間枠内に易生分解の合格レベルに達し、試験時間の経過につれて、最高100%までの除去レベルであった。鎖長C16-18は、易生分解性試験の合格レベル(単鎖の試験で62%から76%)に達したが、10日間の時間枠内ではなかった。C18以上の単鎖(ドコサノール)の1つの試験は37%の分解を示した。環境中の実際濃度でおこなわれた、放射線ラベルした物質(C12-C16)を用いた追加試験で、大変速い分解速度が測定された(約75-85%の除去を示す、大変速い速度定数)。これらの速度は、炭素数12から18の99%超が除去されることを示す排水処理場入出流水の測定濃度のフィールドデータと合致する。分解に関するこの概要は、このカテゴリーの直鎖状および分岐状の両物質に当てはまる。よって、カテゴリー全体は大変高いレベルの生分解性を示すと考えられる。水溶解度が低い物質(C10からC15)の慢性水生毒性試験における除去速度から急速な分解性も示され、微生物による生分解の可能性が非常に高いので被験物質の試験培地からの急速な除去が観察された。

このグループに属するアルコール類の全てが、水中での非生物学的分解に対して安定であると予想されるだろう。水系での光酸化は顕著ではない。アルコール類は加水分解可能な基を持たず、よって加水分解され難い。通常の環境条件下で酸化は予想されないだろう。これらの物質は、ヒドロキシラジカルによって大気中で分解されやすく、半減期が約10-30時間(ヒドロキシラジカル濃度5×10⁻⁵ molecules/cm³に対する測定、および推定による速度定数に基づく)である。鎖長がより長いほどこの範囲でより短い推定半減期となる。
一般社団法人
日本化学物質安全・情報センター

標準的ガイドラインに沿って測定された信頼できる生物蓄積性データは入手できない。

\[\log K_{ow} \] に基づき計算された生物濃縮係数（BCF）は、C6の7.0から、最大C16の46000の範囲であり、C22の1100へ減少する。ヘキサデカノールについて、BCF(Q)SARは45300の値を推定する（ConnelとHawkerの放物線方程式により再計算された）。しかし、2つの信頼できない研究からの測定値56および507-1550の範囲の値がある；このグループと似ているが、分子当たり2.1-2.9の分枝を持つアルコール類のBCFデータも、BCF(Q)SARがBCFを過大評価することを示唆する。

Log K_{ow} 基づくBCF(Q)SAR予測は、生体内におけるアルコールの生体内変換/代謝、すなわち自然なメカニズムによる除去を考慮していない。これらの理由により、カテゴリー・メンバーエールは、生物蓄積性の可能性が低いことが予期される。

フガシティーモデルは、全てのカテゴリー・メンバートの運命予測は環境中への放出経路により異なることを示している。鎖長C10以上について、水へ放出されたアルコールは、底質へ分配されることが予期される。アルコールが大気へ放出される場合、鎖長C14以上では、環境中に最終的に残るアルコールの半分未満を大気中に見いだすことができる。

与えられた特定のばく露経路に応じて、環境への放出の際に各成分が単独に動くという事実により、複数成分からなる物質のばく露モデルの場合は複雑である。

水生生物に対する影響
このカテゴリーのアルコール類は無極性麻酔により作用し、魚、脊椎動物、藻類に同じ程度の毒性を示す。純粋物質の場合、鎖長の増加に伴い親油性が増し、水溶解度は低下する。限定された鎖長まで、水生毒性の相関的な増加がある、すなわち、水溶解度の大幅な低下は、水中におけるアルコールの生物利用濃度を制限し、その結果、影響を及ぼさない濃度になる（カットオフ値）。結果として、鎖長が長い方が毒性を示さない。

水生生物に対して、急性影響のカットオフ鎖長はC13からC14にある（試験対象生物に依存する）。慢性影響について、無脊椎動物での影響のカットオフはC15のあたりである。

結果として、影響濃度はカテゴリーメンバー全体で異なる。適切な場合の推定最低濃度および測定による最低濃度と最高濃度を含む主要な特性値の範囲;

・魚の急性影響（96h LC50）: 0.48 mg/L（C12-C14アルコール類の推定濃度）および0.7-0.8 mg/L（C6-C12アルコール類の設定濃度）~97 mg/L（ヘキサノールの測定濃度）。

・無脊椎動物の急性影響（EC50）: 0.13 mg/L（C14-16アルコール類の48h推定濃度）、0.8-1.1 mg/L（1-ウンデカノールの96h設定濃度）~200 mg/L（ヘキサノールの24h設定濃度）。

・藻類急性生長阻害影響（72h ErC50）: 約0.1 mg/L（C10-16とC12-16アルコール類の設定濃度、および多くの物質の推定濃度）から80 mg/L（ヘキサノールの測定濃度）。

・無脊椎動物の慢性影響: 21day NOECreproは、0.0098 mg/L（初期測定濃度の平均値による、テトラデカノールの測定濃度）~1 mg/L（オクタノールの測定濃度）まで。単鎖長>C15では、水溶解度の限
一般社団法人日本化学物質安全・情報センター

この評価で、単一炭素鎖のアルコールおよびほとんど直鎖のアルコール類のデータがないので、水生毒性と炭素鎖長の間の傾向は、ノルマル(直鎖)アルコールに基づく。しかし、直鎖とほとんど直鎖のアルコールの毒性の比較は市販製品の比較に示される。ほとんど純物質のデータセットは、オクタノール-水分配係數数と、影響濃度との関連性により、従来の(定量的)構造活性相関(QSAR)によって解釈された。

要約すると、これらの物質の予期される環境中挙動の範囲は、以下のように特徴づけることができる。

・短鎖カテゴリーメンバー(≦C11) :溶解度が高い;水生生物に対する急性毒性は1-100 mg/Lの範囲であり、水生生物に対する慢性毒性は0.1-1.0 mg/Lの範囲であり;易生分解性である;

・中程度鎖長のカテゴリーメンバー(C11-C13) :溶解度は低い;急性毒性は0.1-1.0 mg/Lの範囲であり、十分に特徴付けられた水生生物に対する慢性毒性は0.1-<1.0 mg/Lの範囲であり;生分解性は非常に高い(環境関連濃度で非常に高い除去率を有する易生分解性である) ;

・比較的長い鎖長のカテゴリーメンバー(C14-15) :低い溶解度は生物利用能を制限し、よって急性影響が生じる可能性は高くない、十分に特徴づけられた水生生物に対する慢性毒性は0.01/mg/Lから溶解限度までである;非常に高い生分解性である(環境関連濃度で、非常に高い除去率を有する易生分解性である)。

・最も長い鎖長のカテゴリーメンバー(≧C16) :低い溶解度は、アルコールの溶解濃度(および生物利用能)を急性または慢性毒性のどちらも示さない可能性が高い範囲に制限する;また、明らかに生分解性(本質的生分解性と同等と考えられる;環境関連濃度の下で非常に広範囲な除去が見られる)であるが、炭素鎖が短い同族化合物よりも吸着性である。

ばく露2002年のコンソーシアムメンバーによる、これらの長鎖脂肪族アルコール類の世界的な製造量は年間約1,580,000メートルトンと推定された。全製造量の約50%は直接最終製品(工業/商業製品および多くの消費者/パーソナルケア製品)中に使われる。残りは中間体として加工される(中間体量の約65%は限定された場所にある)。

ばく露は、これらの物質の製造、調剤および工業的使用に伴って生じることもあり得る。商業用途では、これらの物質は、放出量が低いと予想される合成中間体として主に使われる。意図的に工業的/商業的および消費者製品中に直接使われるカテゴリーメンバーの50%について、環境への放出が予測され得る(特に、排水処理場の廃棄後の排水処理場の排水を通して)。

USA、カナダ、UK、オランダ、スペイン、イタリア、ドイツにおける排水処理場から、モニタリングデータが入手可能である。世界規模でモニターされた個々の排水測定値の90パーセンタイルは、処理のタイプおよび流量は説明されていないが、2.121 μg/Lであり、国際的平均は1.057 μg/Lである。モデル化(SIMPLETREAT)された混合域濃度(mixing zone concentration)は、製造プラントで~0.02 μg/Lと推定される。

これらの物質は自然においても、バクテリアからヒトにいたるまで、全ての生物で生成され、自然界全体にわたって広範囲に存在する。環境マトリックス中の長鎖アルコールの測定は、自然と人為的発生源の組み合わせを反映することは明らかである。一つの環境ばく露評価が、添付資料中にある:

(http://www.bangor.ac.uk/~oss034/Fatty_Alcohol_Natural_and_Anthropogenic_Sources.doc)。
職業ばく露：一般に、脂肪族アルコールは、閉鎖系施設の既存の化学コンビナートで、製造、加工される。これらは通常は、高温、高圧下で操作される。これらの施設では、標準的な個人保護具が日常的に適用され、直接的な皮膚や眼の接触を防ぐ。一般的に、脂肪族アルコールは揮発性が低く、通常、工学的管理は、呼吸保護具の必要性を避けるのに利用できる。閉鎖系システムの故障を含む非日常作業の際には、高いレベルの保護が適用される。著しいばく露を伴う可能性のある作業は、作業許可制度を必要とし、適切な保護装置について個別の評価が行われる。工業と商業における製品の使用によるばく露は、物質安全データシート（MSDS）の勧告に従って、直接的な皮膚および眼への接触を避けるための措置を適用することによって緩和される。

消費者ばく露：脂肪族アルコールは、消費者用洗濯製品、クリーニング製品およびパーソナルケア製品中に配合される。製品のラベルは、これら製品中の化学成分の有害性を反映し、また意図しないばく露の際の応急処置の指示を含む。勧告および、勧告と追加の推奨作業の種類に関する理論的根拠ヒトの健康：長鎖脂肪族アルコールカテゴリーの化学物質類は、追加作業の優先性は低い。このカテゴリーのメンバーは、急性または反復ばく露の全ての一般的ばく露経路による毒性の程度は低い。概して、このカテゴリーの毒性データベースは、鎖長と毒性の逆相関性を示す。このカテゴリーについて特定された主要なヒト健康有害性は、鎖長C11以下の脂肪族アルコールの皮膚と眼への刺激性である。これらの有害性は、十分に特徴付けられ、組織の破壊または非不可逆的な変化をもたらさない。しかしながら、それらの有害性は、化学物質安全性の専門家および使用者によって留意されるべきである。

環境：このカテゴリーは、C6-22の一連の直鎖アルコールとほとんど直鎖のアルコールの同族体から成っている。炭素鎖の増加は、物理-化学的性状の予想可能なパターンをもたらす;これは環境中運命挙動の範囲を明らかにする。カテゴリーのメンバーは全て同様な生態毒性作用機序を有する。更に、カテゴリーのメンバーの全ては、特に環境関連濃度で急速に生分解可能である。アルコール類は生体内で代謝/生体内変換される;オクタノール-水分配係数に基づく生物蓄積性は過大評価であるかもしれませんを示唆する。関連のアルコールカテゴリーのBCF測定データは、これらの物質の生物蓄積性はlog Kowによる予測よりも低いとする考えを支持する。このカテゴリー中の多くの物質は環境有害性を示さず(急性水生毒性> 100 mg/L、または水溶解度を超えて作用無し)、追加作業の優先性は低い。これらのカテゴリーのメンバーはCASナンバー: 36653-82-4、629-96-9、661-19-8、143-28-2、67762-27-0、67762-30-5、97552-91-5、68155-00-0である。

このカテゴリーのいくつかの物質は環境有害性を示す(魚、ミジンコ、藻類の急性毒性が1-100 mg/Lの範囲)。しかし、これらの物質の全ては易生分解性である。よって、これらのサブグループのメンバーは追加作業の優先性は低い。これらのサブグループのメンバーはCASナンバー: 111-27-3、111-87-5、85566-12-7、67762-25-8、68002-94-8である。

カテゴリーの中の残りの物質は、より高い環境有害性を示す(0.1-1 mg/Lの範囲で、魚、ミジンコ、藻類に)。
一般社団法人日本化学物質安全・情報センター

対する高い急性毒性、およびまたは高い長期毒性。このサブグループの物質は急速に生分解する。そして、カ国から得られた環境モニタリングデータは、環境ばく露は低いと予期されることを示唆し、そのデータはSIARの添付資料に含まれている。ばく露評価と、必要ならばリスクアセスメントの実行を要請される加盟国によって追加作業の候補とされるべきである、このサブグループの物質のCASナンバーは:

112-30-1
112-42-5
90583-91-8
112-70-9
112-72-1
629-76-5
68603-15-6
67762-41-8
68855-56-1
63393-82-8
66455-17-2
68333-80-2
75782-86-4
75782-87-5
80206-82-2
68551-07-5
85665-26-5

[著作権および免責事項について]

[著作権]
本資料の著作権は弊センターに帰属します。引用、転載、要約、複写（電子媒体への複写を含む）は著作権の侵害となりますので御注意下さい。

[免責事項]
本資料に掲載されている情報については、万全を期しておりますが、利用者が本情報を用いて行う一切の行為について、弊センターは何ら責任を負うものではありません。また、いかなる場合でも弊センターは、利用者が本情報を利用して被った被害、損失について、何ら責任を負いません。