初期評価プロファイル(SIAP)

硫酸アンモニウム

物質名: Ammonium sulfate
化学式: N\(_2\)H\(_8\)SO\(_4\)
CAS No.: 7783-20-2

SIAR 結論の要旨

ヒト健康
硫酸アンモニウムの生殖毒性・発生毒性試験は入手できなかった。硫酸アンモニウムは生体系において解離するので、他のアンモニウム塩及び硫酸塩の試験をこれらの毒性指標を補う為に用いることが出来る：類縁化合物のリン酸アンモニウム(水溶液中にアンモニウムイオンを形成する)を用いたスクリーニング試験[OECD TG 422]が入手可能である。しかしながら、硫酸イオンを含む類縁化合物の十分に確かな生殖毒性試験はない。硫酸ナトリウムを用いた2つの制限された試験を生殖毒性・発生毒性の評価に用いることが出来るが、しかしながら、これら試験の何れも胎仔の組織学的検査をしていない。硫酸アンモニウムの遺伝毒性に関する in vivo データはない。データのギャップを埋める為に、硫酸アンモニウムと同様に、水溶媒中で解離しアンモニウムイオンを形成する塩化アンモニウムのデータを用いる。

硫酸アンモニウムは急性毒性が比較的低い(LD\(_{50}\)は2000-4250mg/kg bw;ラット/マウスの経皮LD\(_{50}\)>2000mg/kg bw;ラットの吸入LC\(_{50}\)(8hr)>1000mg/m\(^3\))。経口ばく露後の臨床症状はLD\(_{50}\)値に近いかまたはそれを超える用量をばく露後すぐに、ふらつき、虚脱、無気力、並びに呼吸困難及び不規則な呼吸を含む症状であった。ヒトにおける、0.1-0.5mg硫酸アンモニウム/m\(^3\)エアロゾルの2-4時間吸入ばく露は、肺影響を生じなかった。硫酸アンモニウム1mg/m\(^3\)の急性ばく露で、呼気流量(expiratory flow)、肺気流抵抗(pulmonary flow resistance)、並びに機能肺コンプライアンス(dynamic lung compliance)を抑制する形で非常に僅かな肺影響が健康なボランティアで検出された。

良質の硫酸アンモニウムはウサギの皮膚及び眼に刺激性はなかった。感作性に関するデータは入手できない。
ラットの300mg/m³（唯一の試験用量）ばく露14日間の吸入試験で下気道の組織病理学的変化を報告していなかった。気道は吸入ばく露の標的器官であり、下気道の毒性に関するNOELは300mg/m³である。

ラットの13週間硫酸アンモニウム混餌によるNOAELは886mg/kg bw/日であった。確認された唯一の毒性症状は高用量群の雄における下痢であった（LOAEL：1792mg/kg bw/日）。

硫酸アンモニウムは代謝活性化系の有無にかかわらず、バクテリア（Ames試験）及び酵母において、変異原性がなかった。本物質は哺乳動物類またはヒトの培養細胞において染色体異常を誘発しなかった。

in vivo遺伝毒性試験は入手できない。in vitro試験の陰性結果、並びに塩化アンモニウムのin vivo小核試験の陰性結果に基づいて、硫酸アンモニウムのin vivo変異原活性はなさそうである。他の塩と同様に、高用量の硫酸アンモニウムはラットの胃に腫瘍プロモーション能があるかもしれない；しかしながら、全く同じ条件下の試験では、塩化ナトリウムよりも作用は低い。

生殖及び発生に関する硫酸アンモニウムの影響について信頼できる試験は入手できない。同様なアンモニウム化合物であるリン酸二アンモニウムの、ラットによる1500mg kg⁻¹ bwまでのスクリーニング試験[OECD TG 422]データに基づき、試験された用量までのアンモニウムイオンによる生殖影響は陰性であると結論された。

ラットを用いた硫酸アンモニウムの13週間混餌試験において、睾丸の組織学的変化は1792mg/kg bwまで観察されなかった。卵巣は検査されなかった。生殖影響に関する硫酸塩を用いた十分に信頼できる試験は入手できない。

制限された試験（前処理時間が短い、動物数が少ない、受精率が測定されていない）において、雌マウスに約6550mg硫酸塩kg⁻¹ bw（硫酸ナトリウムとして）までのばく露で、同産仔数に対する影響は見いだされなかった。

硫酸アンモニウムの発生毒性試験は入手できない。リン酸二アンモニウムについての1500mg/kg bwまでのスクリーニング試験[OECD TG 422]において、発生への影響はラットで検出されなかった。硫酸ナトリウム1回の投与量2800mg/kg bwをマウスにばく露した別の制限されたスクリーニング試験において、肉眼的影響及び体重増加に関する有害影響は仔動物では検出されなかった。両方の試験とも、組織病理学的に胎仔を検査していない。

環境硫酸アンモニウムは水溶解度が764g/L（25℃）の白い固体である。熱すると、分解が始まり150℃〜280℃で始まり、実験条件及び試験物質の純度に依存して336℃〜357℃で終わる。比重は1.77であり、アンモニア分圧は固体の硫酸アンモニウムで4.053×10⁻⁷Pa（25℃）である。

logK_{ow}は-5.1と決定された[OECD TG 107]；この方法は解離しない物質だけに適用されるので、硫酸アンモニウムの本方法の有効性は不確かである。本物質のイオン的性質のために、土壌有機質への吸着の推定はいかなる実質的な意味も持たない。

本物質の塩としての特性のために、フガシーモデル及びヘンリー定数の推定は適切ではない。硫酸アンモニウムの物理-化学的特性に基づいて、水圏が主要な標的区分であると予想される。硫酸アンモニウムはアンモニア及び二酸化硫黄から大気中で作られるが、この過程はアンモニアではなく、大気中の二酸化硫黄
一般社団法人 日本化学物質安全・情報センターにより制限され、二酸化硫黄には多くの自然の発生源が有る。粒子状の硫酸アンモニウムは湿性及び乾性沈着物として大気から除去される。硫酸アンモニウムの光分解に関する証拠はない。

滅菌していない土壌において、硫酸アンモニウムはかなり迅速に無機化され、続いて硝化される。硝化及び脱硝化過程は小川や河川において自然に生じ、多くの汚泥二次処理工程と同様である。

高い水溶解度及びイオン特性に基づき、かなりの量の硫酸アンモニウムが吸着及び生物蓄積することは予想されない。しかしながら、土壌中の移動性はイオン-イオン相互反応により減るかもしれない。

環境影響は淡水環境及び海洋環境において評価することができる。更に、いくつかの情報が土壌及び汚泥処理微生物、淡水の底質、並びに陸生環境について入手可能である。

淡水環境

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>試験タイプ</th>
<th>栄養レベル</th>
<th>種</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>急性</td>
<td>魚</td>
<td>Salmo gairdneri の幼魚</td>
<td>LC₅₀(96h) = 173mg/L</td>
</tr>
<tr>
<td>急性</td>
<td>無脊椎動物</td>
<td>淡水のカタツムリ Helisoma trivolyis の幼生</td>
<td>LC₅₀(24h) = 393mg/L</td>
</tr>
<tr>
<td>急性</td>
<td>水生植物</td>
<td>Chlorella vulgaris</td>
<td>EC₅₀(18day) = 2700mg/L (細胞数)</td>
</tr>
<tr>
<td>慢性</td>
<td>魚</td>
<td>Oncorhynchus gorbuscha の稚魚</td>
<td>NOEC(61day) = 11mg/L</td>
</tr>
</tbody>
</table>

淡水水生環境のPNECは最も低い慢性毒性結果、Oncorhynchus gorbuscha の硫酸アンモニウムに対する NOEC 値11mg/Lに基づいている。評価係数100が適切であり、淡水水生環境PNECが0.11mg/Lと導出される。これを支持する情報も3種の両性類幼生について存在する。最も感受性のある両生類は、6週齢Pseudacris regilla オタマジャクシであり、硫酸アンモニウムNOEC(10day)は82mg/Lであった。

海洋環境

海洋生物の急性データは魚、無脊椎動物、並びに植物プランクトンについて入手可能であり、植物プランクトンが最も感受性がある。渦鞭毛藻類のGymnodinium splendens及びGonyaulax polyedraについて、生長抑制が0.7mg/L以上の濃度で検出された。EC₅₀は得られない。海水の無脊椎動物について、影響の最低値は緑イガイPerna viridis (LC₅₀(96hr) = 47.7mg/L)について得られた。海洋の魚について、影響の最低値は幼生Sciaenops ocellatusについて、LC₅₀(10day)が27mg/Lであった。

汚泥処理における微生物

汚泥処理場の処理行程中の硝化行程はNitrobacter spp.の感受性がある株(硫酸アンモニウム4700mg/Lで生長しないが、94mg/L生長する)と感受性のない株(硫酸アンモニウム4700mg/Lでも生長する)の両方が含まれている。これらの結果は特定の硝化バクテリアに対するNOECが94mg/Lより大きいことを示唆している。

陸生環境

陸生環境において、硫酸アンモニウム反復ばく露による主な影響は土壌pHの減少である。特定土壌バクテリア、田にいる藍色細菌(cyanobacteria)に対する最も強い毒性影響の結果は、石灰がない状態で330kg/ha/年で、窒素固定の減少が50%未満となることを示している。同様の結果は植物について見られ、6年間、
一般社団法人日本化学物質安全・情報センター

Picea abiesの耐乾性に影響した。土壌の動物相はCollembolla及びCryptostigmataの両方とも感受性は低く、硫酸アンモニウム708kg/ha年のばく露条件でも総数は増加する。

ばく露2002年の"国際肥料工業協会"の統計に従えば、約76万トンがドイツで製造され、約395万トンが西ヨーロッパ、約333万トンが米国及びカナダ、約395万トンが日本を含むアジアで製造された。世界中の製造量は合計して約1720万トン/年になる。

硫酸アンモニウムは主に商業的肥料混合物における窒素資源として、または直接に散布される肥料として用いられ、それらは全体の量の90%より高い割合を占める。更に、様々な工業用途に用いられ、EUにおいては直接食品添加物としても承認されている。一般大衆が用いることを意図している硫酸アンモニウムを含む非農業用製品(例えば、洗浄製品、塗料)は50%まで硫酸アンモニウムが含まれる。

環境への放出は製造、加工、並びに使用中に発生するかもしれない。ドイツの化学工場の測定によれば、大気中への放出は少ない。2001年に担当国における1企業で製造及び内部加工中に、25kgより少ない量が大気中に放出された。廃水または地表水への排出に関する定量的な情報はこの施設では入手できない。しかし、この製造工場では排出物質は、殆どの量がリサイクルされる。他の製造及び加工工場においての環境放出に関するデータは入手できない。肥料用途からの環境への放出は砂質土壌から水路への侵出を結果として生じるかもしれない。一方、代表的なヨーロッパの集水池からのモニタリングデータは酸性度が低い、埴土、並びに埴壌土からの侵出は無視できることを示唆している。

消費者ばく露は低い。アンモニア塩類及び硫酸塩類は環境中に豊富に存在する。硫酸アンモニウムは大気中のアンモニア及び硫酸の中和生成物である。カナダにおける大気中の硫酸塩のレベルは、3.0-12.6μg/m^3の範囲で、平均が7.0μg/m^3であることが見いだされている。米国における大気中の硫酸塩濃度は0.5-228μg/m^3の範囲であり、平均幅が0.8-31.5μg/m^3であった。大気からの平均1日摂取量は、呼吸量を20m^3/日と仮定すると、合計0.02-0.63μgである。冬の屋内における、硫酸塩レベル(21.6nmol/m^3)は屋外の硫酸塩レベル(30.6nmol/m^3)と同様であることが示され、主に屋外を発生源としている。石油ストーブの使用は屋内の硫酸塩レベルを増加させることが示された(82.7nmol/m^3);屋内の硫酸塩の主な形は硫酸アンモニウムであった。

飲料水中の硫酸塩濃度は、2001年の米国EPAの測定では、中間濃度が24mg/Lで、99パーセンタイル濃度は560mg/Lである。硫酸塩は食品の天然成分である;硫酸アンモニウムは"一般的に安全と認められている"物質であり、米国及びヨーロッパにおいて食品添加物として承認されている。これらのデータから、硫酸塩への消費者ばく露は低いと見られている:食品から453mg/日、2L/日の飲水量と仮定すると飲料水から48mg、並びに20m^3の呼吸を仮定すると0.63μg/日である。食品からの硫酸アンモニウム摂取は20mg/日である。アンモニアの内因的生産(4000mg/日)は食品(20mg/日)、大気(<1mg/日)、並びに水(<1mg/日)経由の外因的摂取(アンモニア及びアンモニウム)よりも約2桁高い。
製品登録によって提供される情報によれば、一般大衆の硫酸アンモニウムへのばく露は主に肥料または園芸生産物の使用、並びにより少ない範囲で塗料及び洗浄製品の用途を通して発生する。

製造、貯蔵、並びにトラックの荷積み及び荷降ろし中の作業者の塵埃ばく露が測定された。吸入性（respirable）塵埃（微細粉塵画分を含む）の8回の測定は8時間以内（個人採取大気試料及び作業部屋の採取試料）で実施され、硫酸アンモニウムの分析は実施されなかったが、100%として推定された。結果として、測定はすべて、検出限界に近い濃度を示した。個人採取大気試料はレスピラブルダストが<0.354-0.360mg/m^3（4試料）を示し、微細粉塵は<0.442-0.455mg/m^3（4試料）であった。

勧告とその理論的根拠と追加作業

ヒトの健康

本化学物質は現在のところ、その有害性プロファイルが低い為に、追加作業の優先度が低い。

環境

本化学物質は環境に対する有害性を示唆する特性を有する。これらの有害性はそれらが高ばく露レベルにおいてだけ明らかなる急性毒性と関係があるので、追加作業の必要性を確証しない。しかし、それらのことは化学物質の安全性専門家及び使用者によって注意されなければならない。本物質は環境に対する本来の有害性の可能性が低いが、環境中で分解して亜硝酸塩になる。肥料としての硫酸アンモニウムの使用は飲料水を通してヒトの亜硝酸塩及び硝酸塩のばく露を評価する際に考慮するように勧告されている。本化学物質は現在のところ、追加作業の優先度は低い。