一般社団法人
日本化学物質安全・情報センター

hSIDS in HPV programme & CCAP
SIAM 14, 26/03/2002

初期評価プロファイル(SIAP)

三酸化クロム, クロム酸ナトリウム, 二クロム酸ナトリウム, 二クロム酸アンモニウム, 二クロム酸カリウム

物質名(CAS No.):
(1) Chromium trioxide(1333-82-0),
(2) Sodium chromate(7775-11-3),
(3) Sodium dichromate(10588-01-9),
(4) Ammonium dichromate(7789-09-5),
(5) Potassium dichromate(7778-50-9)

勧告

これらの物質は今後の作業の候補である。

SIARの結論の概要

環境への放出後にこれらの5物質から生成するクロム化合物の種類は同じであり、したがって環境中の運命および影響を一緒に検討できるため、5物質をひとまとめにして評価した。ヒトの健康についても同様であり、生成する化学種は生物組織中でも同じように振舞い、ゆえに影響をひとまとめに扱うことができる。（三酸化クロム溶液の酸性度についてさらに別の懸念も存在する。）

ヒトの健康

六価クロム（CrⅥ）の毒性学的データベースは一般に大きい。ここで評価するクロム酸ナトリウム、二クロム酸ナトリウム、二クロム酸カリウム、二クロム酸アンモニウム、三酸化クロム（Ⅵ）は全て水への溶解度が高い六価化合物である。

溶液中の三酸化クロム（Ⅵ）は酸化クロムを生成し、その濃縮溶液は高い酸性度を持つ。したがって、この評価で扱う5種類の六価クロム化合物の中で、三酸化クロム（Ⅵ）は他の4物質には無い低いpHに関係する接触部位の問題が存在する。

加えて、この5種類の六価クロム化合物はすべて体内の水に容易に溶解し、クロム酸イオン（CrO₄²⁻）または二クロム酸イオン（Cr₂O₇²⁻）を放出する。この2つのイオンはいずれの六価クロム化合物の場合でも平衡を保って共存する。

5種類全部の化合物から生成したクロム酸・二クロム酸イオンは生物組織中で同じように振舞い、したがって三酸化クロム（Ⅵ）に加わる酸性という特性とそれが毒性に及ぼす影響を除いて、5物質を共通グループとして扱うことができる。さらに、溶液中で同じように容易に解離してクロム酸/二クロム酸イオンを生成する他の六価クロム化合物の毒性学的観察結果を使用して、これらの5物質の毒性を予想することができる。
評価対象の六価クロム化合物のトキシコキネティクスに関するかなり良質なデータベースが存在するが、ヒトのデータは比較的少ない。入手できたデータから、本書で扱う六価クロムは一般にトキシコキネティクスに関して似ており、これらの物質の動態はヒトを含めて、検討した生物種において類似していることが示唆される。

吸入ばく露後には投与したCrVIの20～30%が気道を経て吸収されることが動物試験により明らかにされている。水への溶解度が高いCrVIは、比較的吸収されにくい三価クロム(CrIII)に還元されるため、消化管からは吸収されにくい（ヒトでは用量の2～9%が吸収されたにすぎない）。無傷皮膚のばく露では限られた経皮吸収が起こるに過ぎず、モルモットの試験では水溶液中のCrVIの1～4%が皮膚を通過した。

動物試験の結果によれば、これらの化合物に由来するクロムは吸入ばく露後に数週間にわたって肺にとどまり、また赤血球の寿命の続く限り赤血球中のヘモグロビンと結合している。六価クロムは体内に入った後、グルタチオンのような還元剤の影響によりCrIIIに還元される。分布は単回投与後でさえも広範囲であり、吸収されたCrVIは胎盤も通過して輸送される。排泄は尿と便を通じて行われる。反復投与は数種類の臓器、とくに老化した赤血球を取り込む脾臓への蓄積を来たす。作業員によるCrVI水溶液のミストの吸入は気道の刺激と炎症を引き起こし、その症状・徴候は呼吸困難とチアノーゼであることが症例報告から示される。これらの例では大気中濃度は報告されていない。事故によるかまたは故意の経口摂取により、一部が腐食性損傷を示唆する症状・徴候が現れ、多数の成人で死亡例が報告されている。生存者には肝臓と腎臓の損傷の臨床徴候が認められた。CrVIへの経皮ばく露後にも、腎臓損傷と死亡の例が存在する。これらの例の大部分で、溶液の酸性度または高温により皮膚が破壊または損傷され、そのため皮膚からのCrVIの吸収が容易になった。

ヒトに見られた急性毒性の質的特徴は、実験動物による試験の観察結果により裏付けられる。エアロゾルはラットに吸入させたとき有毒であった。雄ラットの4時間のばく露で報告されたLC50は99mg/m3（二クロム酸カリウム）（CrVIとして35mg/m3）、200mg/m3（二クロム酸ナトリウム、二クロム酸カリウム）（CrVIとして70mg/m3）、200mg/m3（二クロム酸アンモニウム）（CrVIとして83mg/m3）、104mg/m3（クロム酸ナトリウム）（CrVIとして33mg/m3）であった。同様に三酸化クロム（VI）についてもラットの4時間ばく露のLC50が217mg/m3（CrVIとして113mg/m3）と報告された。この物質の腐食性が原因で、低濃度でも気道組織に重度の損傷が生じると思われる。

入手できた三酸化クロム（VI）の経口LD50はラットで52～113mg/kg（CrVIとして27～59mg/kg）、マウスで135～175mg/kg（CrVIとして70～91mg/kg）であった。三酸化クロム（VI）水溶液は腐食性をもつため、胃の出血と潰瘍形成を引き起こした。雄ラットで報告された経口LD50は74mg/kg（CrVIとして26mg/kg）（二クロルム酸カリウム）、59mg/m3（CrVIとして23mg/kg）（二クロム酸ナトリウム）、55mg/kg（CrVIとして23mg/kg）（二クロム酸アンモニウム）、87mg/kg（CrVIとして28mg/kg）（クロム酸ナトリウム）である。雌ラットはもっと鋭敏であり、LD50はそれぞれ48mg/kg（CrVIとして17mg/kg）、46mg/kg（CrVIとして16mg/kg）、48mg/kg（CrVIとして20mg/kg）、40mg/kg（CrVIとして13mg/kg）であった。剖検時に報告された毒性影響としては、肺うっ血と消化管粘膜の腐食があった。
水への溶解度が高い六価クロム化合物は皮膚適用後も有毒である。1件のウサギの標準皮膚LD50試験で、次のような値が決定された:二クロム酸ナトリウム960 mg/kg (CrⅥとして380 mg/kg),二クロム酸カリウム1,150 mg/kg (CrⅥとして410 mg/kg),二クロム酸アンモニウム1,860 mg/kg (CrⅥとして770 mg/kg),クロム酸ナトリウム1,330 mg/kg (CrⅥとして430 mg/kg)。別の一試験で、クロム酸207 mg/kg (CrⅥとして66 mg/kg)および二クロム酸ナトリウム170 mg/kg (CrⅥとして66 mg/kg)の経皮投与はモルモットに死亡を誘発した。三酸化クロムの皮膚LD50は57 mg/kg (CrⅥとして30 mg/kg)と報告されている。

結論として、水への溶解度が高いCrⅥ化合物は、吸入では非常に有毒であり、経口摂取では有毒である。吸入と経口ばく露後にそれぞれ気道と腎臓がこれらの化合物により傷つけられる。皮膚経路では急性的に有害または有毒であるが、以前にまたは同時に皮膚が傷つけられた場合には皮膚からの吸収が多くなるため、より重篤な反応が認められるだろう。CrⅥ溶液のpHに応じて、接触により腐食性影響が生じることがある。

水への溶解度が高い六価クロム溶液を無傷のヒトの皮膚に1回塗布しても、毛嚢周囲に軽度の刺激反応が起こるにすぎない。三酸化クロムはpHが低いため腐食性を持つ。加えて、高温のCrⅥが皮膚に飛んだ場合、重篤な熱傷が起こる。動物データはヒトで観察された結果と一致する。入手できた単回ばく露の動物データまたは職業データから、ヒトの皮膚刺激について明確な濃度―反応相関を決定することはできない。水への溶解度が高い六価クロム化合物はある種の条件下では非常に重症の皮膚影響を引き起こすことがある。水への溶解度の高い六価クロムに反復ばく露された作業員では、最初に何らかの軽微な皮膚の損傷があった場合、潰瘍が現れることがある。これは重篤で持続的な影響である。この場合も動物データはヒトで観察された結果と一致する。入手できた職業データから反復ばく露によるヒトの皮膚への影響の濃度―反応相関を決定することはできず、軽微な損傷のある皮膚の反復汚染から重篤な影響が生じる可能性があるため、量的データは誤りを招きやすい。全体として、水への溶解度が高い六価クロム化合物は腐食性を持つとみなされなければならない。

水への溶解度が高い六価クロム化合物へのばく露事故により、眼に対して著しい損傷が起こることがある。低pHの三酸化クロム(Ⅵ)水溶液または高温のCrⅥ溶液に接触すると、重篤で持続的な影響が生じる。水への溶解度が高い六価クロムの反復投与はウサギの眼に重度の刺激を引き起こすが、単回投与はそれを引き起こさない。入手できたデータから明確な濃度―反応相関を決定することはできない。

三酸化クロム(Ⅵ)水溶液のミストにばく露したクロムめっき作業員に、気道の感覚刺激の症状が生じることが知られている。これは腐食性をもつ物質であることから、このような症状は当然予期される。作業員の調査からはこのような刺激の量的データは入手できなかった。他の六価クロム化合物について感覚刺激の症状を報告した研究は入手できなかった。全体として、入手できたデータを使用して気道刺激に関する信頼できる濃度―反応相関を決定することはできない。

CrⅥとの接触から起こる皮膚感作は、この化合物を取り扱う人々では比較的多い。これは接触皮膚炎患者のパッチテストとさまざまな職業グループの調査で証明された。加えて、標準モルモットmaximisation試験とその変法により、またマウス耳介腫脹度テストにより明らかな皮膚感作性が証明された。感作のメカニズムに関する最新の知識によれば、CrⅢが最終的なハプテンである。CrⅥとの皮膚接触からCrⅥが皮膚に浸透し、そこで還元されてCrⅢとなる。CrⅢとCrⅥの間の交叉反応性を示す若干の証拠が存在する。
一般社団法人
日本化学物質安全・情報センター

CrⅥに感作された患者はCrⅢにも反応すると思われる。全体として、入手できたデータを使用して曝露団における反応誘導またはchallenge（被験物質投与）の信頼できる閾値を決定することはできない。

入手できた症例報告と適切に実施された気管支challenge試験で得られた証拠から、六価クロム化合物の吸入により職業性喘息が起こる可能性が示される。皮膚と同様に、CrⅥ感作患者はCrⅢにも反応すると思われる。職業性喘息誘発のNOELまたは曝露-反応相関を決定することはできない。

反復曝露については、水への溶解度の高い六価クロム、とくにクロム酸ナトリウム、二クロム酸ナトリウム、クロム酸カリウム、二クロム酸カリウム、三酸化クロム（Ⅵ）への作業員の曝露に関する多数の研究が入手できた。報告された主な影響は、吸入と経皮曝露では刺激反応と腐食性反応である。これには下気道の炎症と上気道の鼻中隔穿孔がある。これらの影響とCrⅥ曝露の信頼できる測定値との関係を明らかにするのはできない。原則では閾用量が確認できるはずであるが、実際には入手できたデータからこのような閾値の位置を決定することはできない。腎臓損傷の若干の証拠もクロム酸塩の製造およびクロムめっきの作業員に見出された。曝露-反応データと無影響量は入手できなかった。しかしながら腎臓毒性が生じる曝露レベルは、気道影響が報告された大気中濃度と重なるようである。

動物の反復投与毒性については限られた情報しか入手できなかった。認められた影響はヒトに見出された影響と一般に一致する。原則では閾用量が確認できるはずであるが、実際には入手できたデータからこのように閾値の位置を決定することはできない。クロム酸ナトリウム粉塵の8ヶ月間の吸入は、0.3~3.7 mg/m3（CrⅥとして0.1~1.2 mg/m3）に曝露したマウスに死亡を引き起こした。ラットの感受性はもっと低いようである（16ヶ月間の曝露後に死亡は無し）。0.07 mg/m3（CrⅥとして0.025 mg/m3）以上の濃度の二クロム酸ナトリウム（エアゾール）は90日間曝露したラットに肺胞マクロファージと脾臓リンパ球活性の増加を引き起こした。この増加の大部分は0.57 mg/m3の二クロム酸ナトリウム（CrⅥとして0.2 mg/m3）では消失した。この用量は肺胞マクロファージの食作用を抑制した。クロム酸ミスト（三酸化クロム（Ⅵ））の反復曝露は8ヶ月間試験において3.5 mg/m3（CrⅥとして1.8 mg/m3）で気道に刺激性影響と腐食性影響を引き起こした。全体として、有用な用量-反応情報は入手できなかった。

ラットにおいて、90日間にわたる二クロム酸ナトリウムの強制経口投与後に体重増加率の著しい低下を引き起こした用量（40 mg/kg/日〔CrⅥとして14 mg/kg/日〕）で、精巣の変性が認められた。検討した唯一の臓器である精巣への影響のNOAEL（無有害影響量）は20 mg/kg/日（CrⅥとして7 mg/kg/日）と決定された。他の試験では二クロム酸カリウムを混餌経路により9週間投与したところ、有意な毒性が認められなかった。これら試験の最高用量は、ラットでは24 mg/kg/日（CrⅥとして8 mg/kg/日）、マウスでは92 mg/kg/日（CrⅥとして32 mg/kg/日）であった。

反復皮膚試験は入手できなかったが、これらの物質は反復皮膚曝露で腐食性を持つと認識されている。ヒトの遺伝子毒性の研究はごくわずかである。クロム曝露作業員の循環リンパ球を使用した適切に実施された研究で、遺伝子毒性の証拠は見出されていない。これに対して、in vitroでは大量の遺伝子毒性データが存在し、in vivoで得られたデータはこれより少ない。水への溶解度が高い六価クロム化合物はin vitroとin vivoで有意な変異原活性を生じることを証拠は明瞭に示している。したがって検討する六価クロム化合
一般社団法人
日本化学物質安全・情報センター

物は
in vivo
で体細胞の変異原性物質であるとみなされる。加えて,トキシコキネティクスデータと優性致死
データから,水に可溶の六価クロムは
in vivo
で生殖細胞の変異原性物質である可能性が示唆される。

三酸化クロム(Ⅵ)
水溶液にばく露されたクロムめっき作業員では, 肺がんによる死亡の明らかな過剰が見ら
れた。したがって三酸化クロム(Ⅵ)は吸入経路によるヒト発がん性物質とみなされなければならない。肺がん
の過剰を大気中のCrⅥの特定の濃度と関係付けることはできない。これらのクロムめっき作業員は,めっき
浴の表面から出るCrⅥ酸性水溶液のミストに特にばく露された。このミストの酸性度は,病変の種類および
発症とCrⅥの取り込みに関与する重要な要因であると思われ,そのため三酸化クロム(Ⅵ)のヒト発がん作用
をアンモニウム,ナトリウム,カリウムのクロム酸塩または二クロム酸塩に直接外挿することはできない。

他の検討する六価クロム化合物については,クロム酸塩の製造,クロム顔料の製造,その他のクロムばく
露集団から得た肺がんの明らかな増加を示す疫学的データを,本稿で検討する六価クロム化合物の中の特定
の物質へのばく露と関係付けることができない。しかしながら,これらの状況では溶液中のCrⅥイオンが最
終的な発がん性物質である可能性が高い。したがってこれらの疫学調査から,この評価で扱う他の
4
種類の
六価クロム化合物の発がん性の懸念が生じる。動物発がん性試験はこの評価で扱う化合物のうち
2
種類のみで実施されている。 これらの試験では二クロ
ム酸ナトリウムを反復長期吸入または気管支内点滴により投与したとき,ラットに対して発がん性を持ち,

肺の腫瘍を誘発した。 ラットとマウスにおいて, 三酸化クロム(Ⅵ)の吸入または気管支内埋め込み試験により,
1
~
2
匹の被験群動物に肺腫瘍が生じ,対照群では腫瘍は大部分認められなかった。ゆえに,動物試
験では二クロム酸ナトリウムと三酸化クロム(Ⅵ)の気道発がん性の若干の証拠が存在する。溶液中で

CrⅥを作ることができる他の六価クロム化合物(この評価では扱わない)を使用した同様の試験で,肺への発がん
性が認められた。したがってこの評価で扱う
5
種類全ての六価クロム化合物が吸入経路により気道を作用部
位とする発がん性を持つと懸念してよい理由が動物試験から存在する。経口および経皮経路のデータと,残
りの検討化合物の発がん性試験は入手できなかった。六価クロム化合物は反復経口または経皮ばく露でがん
を誘発する可能性があると思われる。経口経路の場合,消化管内で吸収が少なく,三酸化クロム(Ⅵ)
に還元さ
れることから,全身発がん性は制限されると思われるが,接触部位における作用には問題が残る。皮膚につ
いても同じように考えられる。

したがって全体として,この評価で扱う
5
種類の六価クロム化合物について,吸入経路による発がん性が証
明されたかまたは疑われると考えられる。入手できた情報から,およびこれらの物質の遺伝子毒性を考慮す
ると,この影響のどのような用量‐反応相関または閾値も確認することはできない。

生殖への影響に関するヒトのデータは女性作業員の調査に関する不充分な報告に限定され,これらの報告
からは結論を引き出すことが出来ない。妊性に焦点を当てた
2
件の動物試験が入手できた。二クロ
ム酸カリ
ウムを雌マウスに
333 mg/kg/
日(CrⅥとして
120 mg/kg/
日)以上の用量で,雄マウスに
400 mg/kg/
日(CrⅥとして
140 mg/kg/
日)以上の用量で飲料水に混和して
12
週間投与したところ,有害影響が生じた。雄の
NOAEL
は
166 mg/kg/
日(CrⅥとして
60 mg/kg/
日)であったが,メスでは
400 mg/kg/
日が試験した最低
用量であったため,

NOAEL
は明らかにならなかった。雄の投与後の吸収の増加と,投与した雌の着床の減
少がこの試験の知見に含まれていた。もう
1
件の試験では,妊娠前に二クロム酸カリウムを飲料水に混和し
て雌マウスに経口投与したところ、500 ppm（119 mg/kg・日（Cr Ⅵとして40 mg/kg・日））以上で妊性への有害影響（黄体数の減少と着床前消失の増加）が生じた。この試験から得られた母体毒性のNOAELは119 mg/kg・日（Cr Ⅵとして40 mg/kg・日）、妊性への影響のNOAELは63 mg/kg・日（Cr Ⅵとして20 mg/kg・日）であった。別の試験では、試験した最高用量の86 mg/kg・日（Cr Ⅵとして30 mg/kg・日）で妊性パラメータに対する投与の影響は存在しなかった。

飲料水に混和した二クロム酸カリウムを妊娠中（0〜19日目）に投与したマウスに、着床後消失を含む胎仔毒性が認められた。試験された最低用量の60 mg/kg・日（Cr Ⅵとして20 mg/kg・日）で、母体毒性を伴わない有意な発生毒性が生じた。したがって発生NOAELは決定されなかった。

350 mg/kgの二クロム酸カリウム（Cr Ⅵとして125 mg/kg）をもっと短期間の妊娠（6〜14日目）に投与した1件の試験でも質的に類似した結果が得られた。

雌マウスの妊娠前試験で、試験した二クロム酸カリウム最低用量の250 ppm（63 mg/kg・日、Cr Ⅵとして20 mg/kg・日）から胎仔への影響が見られた。屠殺時には投与動物にかなりの量の総クロムが検出された。着床後消失を含む発生影響のNOAELは特定できなかった。これらの胎仔影響の理由は、投与中止後もマウスにクロムが存在したことにより説明できるだろう。全体として、水への溶解度が高い六価クロム化合物はマウスの発生毒性物質とみなすべきである。これらの知見はヒトにも関係があると考えることができる。

動物試験で認められた生殖に対する有害影響のいくつかは、これらの六価クロム化合物の生殖細胞変異原性に関係しているらしいことに注意したい（「変異原性」の項を参照）。吸入経路または経皮経路による曝露を用いた生殖毒性試験は入手できなかった。

環境水生生物に対する六価クロムイオン化合物の影響に関するデータベースは大きい。急性毒性試験は藻類（EC50の範囲0.13〜4.6 mg/L）、無脊椎動物（LC50またはEC50 0.03〜35 mg/L）、魚類（LC50 18〜213 mg/L）、両生類（LC50 43〜100 mg/L）について入手できた。これらの値はすべて六価クロムの濃度で表してある。

六価クロムの急性毒性はpH、水の硬度、塩分、温度を含む多数の要因に依存する。一般にpH、水の硬度、または塩分の増加に従って、また温度の上昇に従って毒性は増大するが、水の特性が変化しても毒性がほとんど変わらないように思われる試験も存在する。無脊椎動物は急性試験で一般に感受性が高いように思われる。

長期試験も多数存在するが、急性試験の数よりもはるかに少ない。長期試験では水の特性による毒性の変動が小さいが、研究数が少ないので行える比較が限定される。妥当な長期NOEC（無影響濃度）が28種類の生物について特定されている（一部は複数の測定の結果を結合して得られた）。被験生物には藻類、大型水生植物、甲殻類、腔腸動物、昆虫、軟体動物、魚類、両生類を代表する種類が含まれており、NOECはCr Ⅵとして0.0047 mg/L（甲殻類のニセネコゼミジンコCeriodaphnia dubiaの生殖）から3.5 mg/L（魚類）までの範囲である。評価係数10を使用して、PNEC（予測無影響濃度）はCr Ⅵとして0.47 μg/Lと導出された。しかしながらデータの量が膨大なため、EUでは統計的手法も使用されている。データをlog正規分布をとると仮定し、50%信頼閾で分布の下方5%の値（HC5=5%影響点）が、Cr Ⅵとして10.2 μg/Lと決定された。データベースの限界（软体動物と昆虫の代表は1種類しかなく、確証するmesocosm study（中規模環境試験）または野外試験がないこと）を考慮するために評価係数3を適用して導出した表面水区画の
一般社団法人
日本化学物質安全・情報センター

PNECはCrⅥとして3.4μg/Lである。

平衡分配法と酸性環境および中性～アルカリ性環境の種々の分配係数を使用して得た底質のPNECは、「酸性」条件ではCrⅥとして1.5mg/L、「アルカリ性」条件ではCrⅥとして0.15mg/Lであった。

陸圏では、長期毒性データが3つの栄養段階（植物、ミミズ、土壌プロセス/微生物）について入手でき、植物が一般に最も鋭敏なグループである（ミミズについては明確なNOECが決定されていないが、EC50は植物実験で認められた値よりも一般に高値である）。植物の成長試験の最小のNOECはCrⅥとして0.35mg/kg（乾燥重量）である。この値に評価係数10を適用して得た土壌のPNECはCrⅥとして35μg/kg（乾燥重量、湿重量では31μg/kg）である。

土壌の研究では、六価クロムから三価クロムへの速やかな還元が示唆される傾向があり、したがって陸環境への影響については三価クロムの毒性データのほうが適切だろう。ミミズではNOECがCrⅢとして32mg/kg（乾燥重量）と決定されているが、植物ではNOECはCrⅢとして100mg/kg（乾燥重量）前後である。土壌プロセスについては、多数（30）の値を用いた統計的外挿により得たHC5がCrⅢとして5.9mg/kgであった。ミミズのNOECから、評価係数10を使用して導出したPNECはCrⅢとして3.2mg/kg（乾燥重量、湿重量では2.8mg/kg）であった。土壌試験は溶解度の高い（したがって生体内利用能がある）形の三価クロムを使用して実施されたことに注意しなければならない。環境中では六価クロムは、溶解度と生体内利用能の低い三価クロムの形に還元されるようであり、「溶解した」したがって利用能のある三価クロムの濃度が予想影響量に達することはありそうもない。同様に、多くの天然の土壌には、総クロム（生体内利用能が低い三価クロム複合体類として存在する）のレベルはここで導出したPNECよりも高い。したがってPNECはこのような状況には適切でない。

ばく露製造の最初の段階では、クロム鉄鉱石からクロム酸ナトリウムが製造される。EUにおけるクロム酸ナトリウムの生産量は1997年に103,000トンであった。このクロム酸ナトリウムの大部分が二クロム酸ナトリウムに変換される（1997年には110,000トン）、他の3物質は二クロム酸ナトリウムから作られる。

六価クロム化合物の主な用途は、他のクロム含有化学物質（たとえば顔料と染料、製革用の硫酸クロム）の製造、金属処理（主にクロムめっき、他に化成処理、つや出し）、木材防腐処理である。

5種類全部の物質が固体である（有色の結晶）。水への溶解度は115～1,670g/Lの範囲である。蒸気圧とオクタノール/水分配係数はこの種の物質では無関係である。

大気および水への放出が5物質の製造から起こる可能性がある。使用からは水への放出が予想される。六価クロムイオンは水生生物に対して有毒であると認識されており、したがって放出前に水からこのイオンを除く方法が存在する。しかしながらこの方法がどの程度広く採用されているかは明らかでない。

職業ばく露の主な経路は、六価クロム化合物の使用による吸入である。製造は大部分が閉鎖系内で行われているが、閉鎖系の破れおよび製品の袋詰めの際にばく露の可能性がある。皮膚ばく露も起こると思われる。
一般社団法人 日本化学物質安全・情報センター
が、六価クロム化合物の腐食性から、実質的な皮膚接触を防止するための手段が講じられており、意図したばく露条件下では経皮ばく露による全身影響が生じることはないと考えられる。大量の経口ばく露は職場で起こらないと思われる。

CCA（銅・クロム・砒素化合物）防腐剤で処理した木材中の残留六価クロム化合物の存在による消費者ばく露の可能性は非常に低い。CCA処理木材が、注入後まだ乾燥していない場合、ばく露レベルはもっと高くなるだろう。

EUでは、皮革製品、顔料、染料、ステンレス製品、ビタミンK由来製品またはモンタンワックスからの六価クロム化合物への消費者ばく露はないと報告されている。環境ばく露源（大気、水、食品）からのCrⅥの接触、吸入、または経口摂取によるばく露の可能性は非常に低い。

いったん環境に入ると、そこで溶解している主な化学種は$HCrO_4^-$とCrO_4^{2-}である。二クロム酸塩類は高濃度（Crとして>0.4 g/L）のみで重要である。六価クロムは強力な酸化剤であり、環境中の一連の還元剤と反応して三価クロム化合物を生成する。逆の反応も可能であるが、強力な酸化剤が必要であり、一般的な環境条件下では起こりそうもない。環境中に放出されたクロムの大部分は三価クロムに変わると思われるが、全ての放出でこの変化が迅速に起こるというわけではないだろう。

六価クロム化合物は土壌および底質中で三価クロム化合物よりも移動性が大きい。六価クロムの収着はpHが高くなるに従って減少するのに対して、三価クロム化合物の収着はpHが高くなるに従って増加する。

六価クロムは水生生物で著しく生物濃縮しないように思われるが、生体内でいったん三価クロムに還元されると、生体内の総クロムレベルが高くなる可能性がある。

勧告される今後の作業の性質
全てのSIDSエンドポイント（影響判定指標）および他のSIDS以外のエンドポイントについて有害性分類を実施するための充分な情報が存在する。しかしながら、これらの物質は以下のような今後の作業の候補である：

水圏と土壌について全国および地域のばく露情報の収集が必要であり、その結果によってはリスクアセスメントを考える必要がある（欧州の既存の地域リスクアセスメントで多数の用途についてリスクの削減の必要が確認されたことに基づく）。

底質生物の毒性データが入手できなかった。このデータはSIDS後活動として作り出すことができるだろう（欧州リスクアセスメントで既に表面水へのリスクが確認されたので、この評価はEUでは行う必要がならない）。

変異原性と発がん性の観点から、全ての職業ばく露シナリオに関するリスクおよび環境を通じたばく露からのリスクを削減する必要がある。職業ばく露では、短期ばく露による急性毒性、皮膚および眼の刺激、気道感覚刺激、皮膚感作、職業性喘息、生殖毒性（妊性と発生）についてもリスクを削減する必要がある。

CCAを注入した未乾燥の木材への消費者ばく露のリスクアセスメントは、後援国（英国）では完全に乾燥していない木材の販売を予防するための規制が存在するので実施されていない。特別な規制が存在しないならば、このばく露シナリオに関するばく露データの収集が必要であり、その結果によってはリスクアセスメントが必要だろう。
著作権

本資料の著作権は弊センターに帰属します。引用、転載、要約、複写(電子媒体への複写を含む)は著作権の侵害となりますので御注意下さい。

免責事項

本資料に掲載されている情報については、万全を期しておりますが、利用者が本情報を用いて行う一切の行為について、弊センターは何ら責任を負うものではありません。また、いかなる場合でも弊センターは、利用者が本情報を利用して被った被害、損失について、何ら責任を負いません。