一般社団法人
日本化学物質安全・情報センター

SIDS in HPV programme & CCAP
CoCam 1, 10/10/2011

初期評価プロファイル（SIAP）

物質名：テトラクロロメタン（四塩化炭素）
CAS No. : 56-23-5

SIARの結論の要旨

テトラクロロメタン（IUPAC名）は、その業界の慣用名の四塩化炭素に基づいて、規則の枠組みのみならず、多くの国や各地域のデータベースにも同様に記載されている。したがって、四塩化炭素（CTC）がこの評価の中で使われる。

物理的及び化学的特性

四塩化炭素（CTC）は、融点-22.6℃、沸点76.8℃、相対密度1.59（20℃）、及び測定蒸気圧12 kPa（20℃）の無色の液体である。測定オクタノール/水分配係数（log Kow）は2.83、及び測定水溶解度は846 mg/L（20℃）である。

ヒトの健康

四塩化炭素は、すべてのばく露経路で急速に吸収される。経口吸収率は、85%と推定され、その内の大部 分は空気中に呼気として排出される。吸入による吸収は、げっ歯類やサルでの試験より60%と推定される。

四塩化炭素は、血液から肝臓、腎臓、脳、及び他の器官に拡散し、脂肪組織に蓄積する。四塩化炭素は、二酸化炭素を形成する加水分解を受けてホスゲンを生じる可能性がある好気性代謝によって、トリクロロメチルラジカルの生成を伴って、主にチトクロームP450酵素によって代謝される。このラジカルは、クロルホルム、ヘキサクロロエタン、又は一酸化炭素を形成する、或いは脂質、タンパク質、及びDNAに直接共有結合する嫌気反応を受ける可能性がある。代謝産物によるハロアルカリ化及び脂質の過酸化の両方は、細胞機能の消失やそれに続く細胞死に寄与する。代謝されなかった四塩化炭素は、主に空気中に呼気として排出され、及び又は糞中に排泄され、そして相対的に最少量が尿から回収される。入手可能な代謝に関するヒトのデータはない。

急性データの全ては、限られた情報を有する試験の証拠の重みのアプローチに基づく。経口LD50値は、ラットで2,500 mg/kg bw、経皮LD50値（不特定のばく露期間）は、モルモットで＞2,130 mg/kg bwであった。

もっとも低い吸入（6時間）LC50値は、ラットで46,260 mg/m3であった。臨床症状には、吸入ばく露後の昏睡や傾眠が含まれた。急性経口又は急性経皮ばく露後の臨床症状は、報告されなかった。吸入及び経口ばく露後の肝臓損傷の形成における非致死性毒性が、明らかにされた。
一般社団法人
日本化学物質安全・情報センター

動物試験から入手できる限られた情報に基づき、四塩化炭素は皮膚及び眼に軽度の刺激性がある。未希釈の四塩化炭素は、マウス局所リンパ節試験（OECD TG 429）で弱い皮膚感作性の証拠を示した。全ての反復用量試験で、肝臓毒性が観察された。90日試験（OECD TG 413）において、ラット10匹/性/濃度が6時間/日、5日/週間、0、64、192、576、1,728、5,184 mg/m3で吸入ばく露された。最低用量64 mg/m3は、肝重量の増加及び肝細胞における大きな脂肪滴に基づいて、LOAECであると確定された。同じばく露方法を用いたマウスの試験でも、64 mg/m3のLOAECは、肝細胞における大きな脂肪滴や細胞質の小滴に基づいた。

慢性毒性/発がん性併合試験において、ラット50匹/性/濃度が2年間にわたり、6時間/日、5日/週間で0、32、160、800 mg/m3に吸入ばく露された。32 mg/m3のLOAECは、(最高用量レベルでの雌における慢性腎症の増加と同時にもたらされた)上昇した尿タンパク質濃度の増加率に基づき設定された。肝臓における病理組織学的影響は、160 mg/m3でみられた。

生存率の低下、体重増加量の減少、肝臓重量の増加、肝臓の病理組織学、及び肝臓毒性に関連した酵素活性の増加に基づき、32 mg/m3のNOAECが同じ条件でばく露されたマウスにおいて、明らかにされた。ラット及びマウスの経口ばく露(限定された情報を有する試験の証拠の重みのアプローチによって)は、酵素活性(LDH、AST、ALT)の増加、肝臓重量及び病理組織学的影響(肝細胞の小葉中心性空胞変性、肝細胞肥大)の増加、肝臓の排出機能の低下によって示されたように、肝臓への影響が最も重大だったことも明らかにした。0、1、10、33 mg/kg bw/dayで投与された雄ラットの12週間試験から、1 mg/kg bw/dayのNOAELが設定された。肝臓毒性の指標の酵素活性の増加及び異常な肝臓の病理組織所見は、10 mg/kg bw/dayの用量以上から生じた。化学工場労働者の疫学研究において、6.2 - 75 mg/m3の四塩化炭素にばく露された労働者に肝機能への影響のいくつかの徴候が認められた。免疫機能の抑制が、経口反復用量試験後のマウスにおいてみられているが、ラットではみられていない。

In vitroの変異原性試験の多くは、陰性であった。擬陽性、又は陽性の結果がサルモネラ試験で得られており、そして菌類における試験では一貫して陽性であった。ほ乳類細胞のin vitro遺伝毒性試験は、さまざまなる結果を示した。遺伝子突然変異の証拠は、一般的に、遺伝子組み換えマウスを含むin vivoの試験で明らかにされていない。四塩化炭素の投与は、処理されたマウスやラットの肝臓でDNA切断、及び断片化をもたらすという一部の証拠があるが、広範な肝臓毒性は、DNA損傷が報告されている各試験でみられた。

損傷のいくつかは、四塩化炭素の代謝や脂質過酸化の中での活性種による可能性があるが、観察された損傷の多くは、突然変異に至る遺伝毒性反応というよりむしろ細胞死と関連した細胞毒性反応に関連していると思われる。四塩化炭素が、ラットあるいはマウスの骨髄での染色体損傷についての標準法で試験されたとき、活性の証拠は認められなかった。四塩化炭素の高い細胞毒性の後に、染色体の切断や損傷の増加がラットの肝臓で生じる可能性があるといういくつかの証拠がある。観察されているこの増加は、肝臓毒性用量でのみ生じている。四塩化炭素は、げっ歯類の肝臓で活性酸素種や脂質過酸化物を経由してDNA付加体の形を惹起した。顕著な肝臓毒性を起こす条件下で試験された場合、不定期DNA合成は、四塩化炭素で処理されたラット又はマウスの肝臓において認められなかった。

全体的な証拠の重みに基づき、四塩化炭素はin vivoで突然変異原であるとは考えられない。In vivoで観察された遺伝毒性の影響は、細胞損傷、並びに酸化ストレスの反応のような明白な細胞毒性の存在下で起きる。

胎盤型グルタチオン-S-トランスフェラーゼ陽性の病巣として認知される肝臓がん形成の前がん病変部、すなわち変化した細胞病巣及び有糸分裂の増加が、576 mg/m3以上のラットの90日間試験においてみられた。
肝臓がん形成の前がん病変部は、2年間のラット試験の800 mg/m3でもみられた。上記のラット及びマウスでの慢性毒性/発がん性併合試験で、肝細胞腺腫及び肝細胞がん及び又はそれらを合わせたものの発生率が増加した。肝細胞腫瘍及び肺への転移の複合的な発生が認められた。ラットについて、160 mg/m3のNOAECは、肝細胞腺腫と肝細胞がんを合わせたものに基づき、設定された。マウスについて、32 mg/m3のLOAECは、肝細胞腺腫に基づき、設定された。最高濃度レベルで、マウス副腎に褐色細胞腫が認められた。ジエチルニトロソアミンの惹起後に、四塩化炭素0、6.4、32、160、800 mg/m3を6週間にわたりばく露されたラットは、NOAECの32 mg/m3での処理終了後に前がん肝臓病変部における濃度に関連した増加も示した。

4日間隔で20 mg/kg bw/dayまでの低い経口ばく露後、マウスは明らかな毒性の存在下で、肝臓腫瘍の顕著な増加を示した。20 mg/kg bwを週1回、経口ばく露されたハムスターは、明らかな毒性の存在下で、肝臓腫瘍の発生率増加があった。概して、四塩化炭素への吸入及び経口ばく露は一般に肝臓毒性の存在下で、げっ歯類の肝臓に腫瘍を生じた。副腎での良性腫瘍は、吸入ばく露されたマウスで発生した。信頼できる経皮発がん性試験は入手できなかった。ヒトにおいては、IARCによって結論づけられたように、四塩化炭素の発がん性について十分な証拠がない。

生殖毒性が、2年間の摂餌試験の間、非常に限定された方法で調べられ、この試験では四塩化炭素0、5-8又は15-25 mg/kg bw/dayの推定用量を与えられたラットが2ヵ月間隔で5回交配された。親動物の毒性及び生殖毒性としてNOAEL15-25 mg/kg bw/dayが示された。さらに、ラット及びマウスにおける90日及び慢性吸入試験において、病理組織学的影響は生殖器において明らかにされなかった。黄体形成ホルモンの影響が発生試験でみられた(下記参照)ので、四塩化炭素はより高用量で生殖行動に有害な影響をもたらすかもしれないという不確実性がある。

OECD TG 414(1981)による妊娠6日から15日までの0、2,137、又は6,425 mg/m3への6時間/日雌ラットのばく露は、母動物毒性、及び発生毒性に対する2,137 mg/m3のLOAECをもたらした。この用量レベルで、母動物体重や摂餌量は減少し、肝臓への影響が観察され、また胎児の体重及び頭殿長も減少した。妊娠ラットは、妊娠6-15日の間0、25、50、75 mg/kg bw/dayを胃管強制により投与され、母動物は分娩させられ、出産後6日で殺処分された。母動物毒性、及び発生毒性のNOAEL 25 mg/kg bw/dayが、母動物体重の減少及び完全な同腹児吸収に基づき、設定された。後者は黄体形成ホルモンの減少と関連づけられた。まとめると、四塩化炭素は母動物にも毒性がある用量だけにおいて発生毒性があると立証された。

四塩化炭素は、ヒトの健康に有害性(急性毒性(肝臓)、軽度の皮膚及び眼の刺激性、皮膚感作性、反復投与毒性(肝臓、腎臓)、実験動物における発がん性影響(主に肝臓毒性の存在下での肝臓腫瘍)、母動物毒用量での発生毒性、及び神経毒性)を示す性質を有する。共同化学品アセスメントプログラムの目的のため、ヒト健康の有害性を特徴付けるのに適切なスクリーニングレベルのデータが利用可能である。

環境
四塩化炭素の主な減衰の源は、成層圏における光分離によるが、海洋表面の取り込みによる消失及び土壌による取り込みも関連がある。全大気圏の寿命(成層圏、海洋、土壌に対する消失を考慮にいれ、対流圏と成層圏を合わせた四塩化炭素の総合的難分解性。)の推定は、20から35年の範囲で、最近見直された値は26年である。成層圏における消失に関して、四塩化炭素の一部の寿命は44から50年と推定された。最終的に光分解(185-225nm)されて、トリクロロメチルラジカルと塩素
一般社団法人
日本化学物質安全・情報センター

原子を生成する成層圏の上方に拡散する。成層圏の条件下での直接光分解は、非常に効果的であり、DT50値は数分単位のオーダーの範囲である。しかし、対流圏から成層圏への移動時間は非常に長く、移動時間は消耗を限定する。光分解の速度は、高度>20 kmで重要になり始め、高度とともに増加する。四塩化炭素及び成層圏で四塩化炭素の光分解により生成された他の反応種は、成層圏のオゾンを破壊する反応を触媒する。四塩化炭素は、二酸化炭素と比較して、1,380の地球温暖化係数をもつ温室効果ガスである。

入手できるデータに基づき、加水分解速度が1 ppmの濃度で7,000年の推定半減期を有する非常にゆっくりしているので、環境条件下において、加水分解は四塩化炭素の分解に関連した過程ではない。

四塩化炭素は、10 mg/Lより高濃度で水生微生物に対して毒性があると思われる。水中で好気性条件下、陰性の結果が、OECD TG 301C (MTI(I)試験法)に従った易生分解性試験について報告されているが、試験で使われた高濃度では、細菌への毒性は生分解性を妨げているかもしれない。他の好気性試験において、5、10 mg/Lにおいて7日間で80-87%、さらに7日後の二次培養で、100%の顕著な一次生分解性が観察されている (非生物的コントロールは、5及び10 mg/Lのそれぞれの試験物質濃度について5-23%の蒸気消失 (25℃)を記録した。)。嫌気条件下では、いくつかの試験が、脱窒素並びにメタン生成の条件下について、四塩化炭素の代謝や無機化を報告している (非順応細菌で脱窒条件下、3週間後、主に二酸化炭素へ約70%交換。順応細菌で、メタン生成条件下、3週間で二酸化炭素への完全分解)。しかし、四塩化炭素は、従属栄養細菌の成長のための炭素及びエネルギーの唯一の供給源として寄与することは、予期されないだろう。微生物の特別な要求 (酸化還元電位、pH、毒性金属の欠如)が満たされれば、四塩化炭素は共代謝によって、無酸素条件で急速に生分解されるかもしれないと結論づけることができる。実験室条件下、果糖/塩及びブドウ糖/塩の培地で酢酸生成菌 Acetobacterium woodii 及び Clostridium thermoaceticum は、それぞれ3日以内に完全に四塩化炭素を分解した。特別な条件によって、クロロホルム、塩化メチレン、クロロメタンを一時的な中間体として、四塩化炭素から生成する可能性である。

低い生物濃縮係数 (BCF) は、水生種で決定されている。淡水魚で、BCF値はニジマス (Salmo gairdneri Richardson) で40、ブルーギルサンフィッシュ (30) が測定されている。ニジマスでの筋肉における生物濃縮は、17.7±2.4であった。

四塩化炭素は土壌中で中程度の吸着能があり、フガシーモデル (レベルⅠ) により、大気へ99%を超えて分配する。大気、水、土壌コンパートメントへの等しい放出を用いるフガシーモデル (レベルⅢ) (EPI Suite 4.1) は、四塩化炭素が主に大気 (49%) 及び水 (48%) に分配し、少量が土壌や底質に分配することを示す。大気にだけ放出された場合、四塩化炭素は水、土壌、底質にごく少量が分配されて、ほぼ全て (>99%) このコンパートメントに残る。ヘンリー定数 2,370 Pa.m³/mole (20℃) は、水相からの揮発は高いと予期されることを示唆する。

2種類の土壌 (シルトロームと砂壌土)の加重平均 Koc 値 115.2は実験的に決められ、土壌中の中程度の吸着能を示す。
一般社団法人
日本化学物質安全・情報センター

水生種について、以下の急性毒性試験の結果が決定されている;

<table>
<thead>
<tr>
<th>分類群</th>
<th>生物種</th>
<th>エンドポイント</th>
<th>結果</th>
<th>コメント</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>魚、淡水</td>
<td>96h-</td>
<td>-LC50 24 (m)</td>
<td>流水式 (OECD TG 203)</td>
</tr>
<tr>
<td></td>
<td>Danio rerio</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>魚、淡水</td>
<td>96h-</td>
<td>-LC50 7.6 (m, 死亡)</td>
<td>半止水式 (OECD TG 203)</td>
</tr>
<tr>
<td></td>
<td>Oryzias latipes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>無脊椎動物、淡水</td>
<td>48h-</td>
<td>-EC50 8.1 (m, 遊泳阻害)</td>
<td>半止水式 (OECD TG 202)</td>
</tr>
<tr>
<td></td>
<td>Daphnia magna</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>水生植物</td>
<td>72h-</td>
<td>-ErC50 20 (m, 生長速度)</td>
<td>止水式、上部空間の無い閉鎖系 (OECD TG 201)</td>
</tr>
<tr>
<td></td>
<td>Pseudokirchnerella subcapitata</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

水生種について、以下の慢性毒性試験の結果が決定されている;

<table>
<thead>
<tr>
<th>分類群</th>
<th>生物種</th>
<th>エンドポイント</th>
<th>結果</th>
<th>コメント</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>無脊椎動物、淡水</td>
<td>21d-</td>
<td>-NOEC 3.1</td>
<td>半止水式、上部空間の無い閉鎖系 (OECD TG 211)</td>
</tr>
<tr>
<td></td>
<td>Daphnia magna</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>水生植物</td>
<td>72h-</td>
<td>-NOEC 2.2 (m, 生長速度)</td>
<td>止水式、上部空間の無い閉鎖系 (OECD TG 201)</td>
</tr>
<tr>
<td></td>
<td>Pseudokirchnerella subcapitata</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>微生物</td>
<td>16h-</td>
<td>-TT 30</td>
<td>ガイドライン試験でない</td>
</tr>
<tr>
<td></td>
<td>Pseudomonas putida</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

胎生-幼生段階での四塩化炭素の毒性が、フタをした流水式試験系を使って、両生類 Rana temporaria (ヨーロッパアカガエル)、 Rana pipiens (ヒョウガエル)、 Ambystoma gracile (ノースウエスタンサンショウウオ)、 Xenopus laevis (アフリカツメガエル) に関して試験された。LC50 は孵化後、0日目と4日目で計算された。その値はそれぞれ、Rana temporaria で 4.56 mg/L 及び 1.16 mg/L、Rana pipiens で 6.77 mg/L 及び 1.64 mg/L、Ambystoma gracile で 9.01 mg/L 及び 1.98 mg/L、Xenopus laevis で > 27 mg/L 及び 22.42 mg/L であった。

四塩化炭素は、環境有害性(急性水生毒性値 1〜100 mg/L)を示す性質を有する。さらに、成層圏で四塩化炭素の光分解によって形成される塩素ラジカル及び他の活性種は、成層圏のオゾン層を破壊する反応を触媒する。四塩化炭素は好気条件下で易生分解性でないが、共代謝によって嫌気性条件で急速に生分解される。

四塩化炭素は顕著な生物蓄積性はない。共同化学品アセスメントプログラムの目的のために環境有害性を特徴付けるのに適切なスクリーニングレベルのデータが利用可能である。
一般社団法人
日本化学物質安全・情報センター

(HFCs)及び他の化学物質に完全に変換される供給原料、すなわち原材料として使用される。

製造者に基づいたEUの外からの全輸入品と他のEUからの全購入品を除くが、モントリオール議定書で製造を認可された四塩化炭素を含むEUにおける実際の製造量は、
58,000トン(1989年)から15,700トン(2008年)に減少した。

米国において、1996年以来、実際製造された全四塩化炭素はモントリオール議定書で許可された原料及び他の用途での使用のために輸出されている。米国から輸出される全四塩化炭素(全製造に等しいと考えられる)は、
2006年及び以前に10,000メトリックトン超/年だったが、2010年に500メトリックトン未満/年に低下している。

四塩化炭素の使用が、規則(EC)No 1005/2009によってEUで施行されたオゾン層を破壊する物質に関するモントリオール議定書によって制限される。四塩化炭素の認可された主な用途は、原料としてであり、小規模の溶媒用途は特殊な工業用処理薬品（例えば、塩素気体の中にある不活性化ガスから残留塩素を分離し、使用可能な形でそれを回収するために）、及び不可欠な実験室及び分析の用途に限定される。

環境ばく露
環境における四塩化炭素の主な発生源は、工業生産及び認可された用途からの漏洩損失である。最近20年間での顕著な減少にもかかわらず、四塩化炭素は、長寿命化学物質に由来する全対流圏の塩素(2008年で~3.4 ppb)の内の359 ppt(約11%)を占めた。四塩化炭素の全世界的な平均表面混合比は、1990年のピーク以来減少している。

2008年までに四塩化炭素の表面平均濃度は約90 pptであり、マイナス1.1からマイナス1.4 ppt/年の割合で2007年から2008年の間に減少している。大気中の最大四塩化炭素濃度は、溶量混合比値100-130 pptで高度10 km以下で測定された。

工业発生源から9年間(1995-2004)の平均化した表面流動が、45,500トン/年(工業をもとにしたデータ)及び74,100±4,300トン/年(2つのネットワークと3D化学物質輸送モデルから大気中の四塩化炭素測定値に基づき、計算された)の間であると推定された。

UNEPに報告されたデータから導出された四塩化炭素排出と大気の動向における寿命の増減、又は不確実性によって説明することができない測定された全体混合比から導出された排出の間に、矛盾がある。

四塩化炭素は、海洋での海藻、バイオマスの燃焼及び噴火によって非生物学的に生産され、さらに、岩石及び鉱石に含まれている。鉱山の活動や岩の風化が、他の有機ハロゲンに混じって四塩化炭素を放出する。

火山の発生源からの四塩化炭素の全世界推定放出量は、3.4±1.0トン/年と計算される。海藻生産から放出される量はわからない。カリウム塩鉱業は、100-150トン/年の四塩化炭素の放出の原因となる。

大気への排出及びIPPC設備から水への放出の両方についての定量的データが、14のEUメンバー国の50施設を包む主に基礎有機化合物の工業規模の製造に大部分が由来する、5つの活動について報告されている:
2008年に大気へ63トンの放出、水へ0.5トンの放出。

*JETOC* 註:IPPC(Integrated Pollution and Control)、統合的汚染防止管理
一般社団法人 日本化学物質安全・情報センター

ール議定書によって段階的に廃止されるので、大気圏のオゾン及び地球温暖化への四塩化炭素の影響は減少する可能性が高い。

ヒトばく露

EUにおいて、四塩化炭素の使用(純粋な化合物、又は0.1%を超える四塩化炭素の混合物中)は、専門家によるわずかな工業用途及び研究用途のために、今はREACH規則(Regulation [EC] 1907/2006)によって引き継がれている前の指令、76/769/EEC(いわゆる上市と使用の制限に関する指令)によって、1996年から制限される。

さらに、しっかりした放出管理を伴う閉鎖設備において、個々に指定されたプロセスでの中間体、又は溶媒としての工業における利用だけを見越したオゾン層を破壊する物質に関して規則(EC)No. 1005/2009(いわゆるODS規制)によっても、四塩化炭素はそれ以上に制限される。研究試薬としての使用も、研究所の専門家による特殊な使用に限られている。したがって、消費者の直接ばく露は1996年以降EUにおいて予測されない。

欧州の職業ばく露限度に関する科学評議会(SCOEL)は、四塩化炭素について1 ppm〔6.4 mg/m^3〕8時間の時間加重平均ばく露及び5 ppm〔32 mg/m^3〕の短時間(15分間)ばく露限度を推奨する。

金属の洗浄、ドライクリーニング、溶媒抽出などのような"分散的"な用途での四塩化炭素の使用は、肝臓毒性の認知後、1970年までに米国で中止し、CFC製造の原料としての四塩化炭素の使用は1996年に終わった。

2006年EPAのインベントリー更新報告(IUR、www.epa.gov)は、2005年の四塩化炭素の製造と使用に基づいている。公表情報は、四塩化炭素の製造が454,455と227,273メトリックトンの間だったことを示す。製造、加工及び使用の場所の数は、1,000人以上の労働者に関して100-999の間であった。これらの値は、四塩化炭素が副産物として生成され、そして分解される状況を含むと予測される。予期されるように、四塩化炭素の消費者使用は報告されていない。

[著作権および免責事項について]

[著作権]
本資料の著作権は弊センターに帰属します。引用、転載、要約、複写(電子媒体への複写を含む)は著作権の侵害となりますので御注意下さい。

[免責事項]
本資料に掲載されている情報については、万全を期しておりますが、利用者が本情報を用いて行う一切の行為について、弊センターは何ら責任を負うものではありません。また、いかなる場合でも弊センターは、利用者が本情報を利用して被った被害、損失について、何ら責任を負いません。