一般社団法人日本化学物質安全・情報センター

SIDS in HPV programme & CCAP
ASSESSED VIA CDG

初期評価プロファイル（SIAP）

乳酸

物質名:

CAS No.:

50-21-5

有害性の結論の要旨

註記:この報告書の結論はOECD加盟国によるコメントの考察、およびアメリカ合衆国によってUS HPV化学物質プログラム中で2008年8月に公表された最終報告書「Hazard Characterization and Robust Summary」に基づいている。

US HPV化学物質プログラムにおいて要求されたSIDSエンドポイントはOECDHPV化学物質プログラムにおいて評価されたエンドポイントと同じである。

補完化学物質(supporting chemical)を用いることの理論的根拠

当該化学物質、乳酸（CAS No. 50-21-5）はラセミ混合物である。しかし、通常は、乳酸の天然型（L(+)-乳酸（CAS No.79-33-4））だけが製造される。

L(+)-乳酸は生物学的に重要である；したがって、多くの入手可能な有害性データはL(+)-型について明らかにされている。

L(+)-乳酸はラセミの乳酸の補完物質として使用される。乳酸のカルシウム塩（乳酸カルシウム）も反復投与毒性および発がん性の補完化学物質として使用された。

物理的化学的特性

乳酸は透明から、わずかに黄色い液体であり、融点が16.8℃、沸点が258℃（1000 hPa）、蒸気圧が0.004 hPa（20℃）；オクタノール-水分配係数（logKow）が-0.62、および水溶解度が876 g/Lである。解離定数（pKa）は3.68であり、自然環境中のpHでは主に解離した形状で存在すると予測される。

ヒトの健康・生殖毒性についてのデータは提供されず、他の一部のエンドポイントについては限られたデータしか入手できない。しかし、この物質は、ヒトの中間代謝の典型的な構成物なので、試験の必要は考えられない。

L(+)-乳酸は哺乳動物における天然の機能性代謝物質であり、哺乳類の燃料としての役割がある。

″乳酸シャトル(lactate shuttle)″の概念によれば、L(+)-乳酸は酸化や糖新生のために炭水化物のポテンシャルエネルギーを配る主要な方法を代表する。

″乳酸シャトル″の概念は、他の解糖系活性化の状態と同様に、激しい運動の間に、酸素供給の状態にかかわらず、筋肉内のグリコールの流れは、L(+)-乳酸の生成を伴うということである。静止状態のヒト体内におけるL(+)-乳酸生成速度は、約1.3 mol(70 kg/bw)24h-1(117 g/日相当)である。
一般社団法人
日本化学物質安全・情報センター

L(+)乳酸の急性経口LD50値はCharles Riverラットの両性について3543 mg/kg-bw - 4936 mg/kg-bwである。昏睡、運動失調、伏臥姿勢、不規則呼吸、立毛、斜視、流涙、流涎、瘡蓋目および鼻口部の痂、軟便、濡れたまたは黄色/茶色に汚れた被毛、および瀕死の臨床的症状が、早くて投与0-1時間後、遅くとも2日後に観察された臨床徴候であった。死亡が見られた動物および3162 mg/kg-bwで生存した4匹の雌の剖検としては、変色した両肺、両肺の固い組織、片方の肺上の緑色病巣; 胃の複数の障害; 変色した肝臓、肝臓上の白色病巣、青白い被膜領域を有し表在性びらん、あるいはまだら状の肝臓; 変色した腎臓、および鼻または口の周辺の赤茶色の浸出物が挙げられた。剃毛した擦過皮膚へのL(+)乳酸の2時間ばく露後の、ニュージーランドホワイトウサギの両性における急性経皮LD50値は> 2000 mg/kg bwである。死亡あるいは毒性の臨床的徴候は見られなかった。しかし、処理第1日目に重篤な発赤および浮腫が、すべての動物の塗布部位で観察された。発赤と浮腫の双方とも重篤さは、観察14日までに減少した。脱色、壊死、痂皮形成、弛緩、落屑および露出箇所(denude)も、一部の処理部位で見られた。剖検では、暗赤色の病巣が1匹の雄の肺表面で観察された; 其他異常は観察されなかった。

L(+)乳酸エアロゾルへの鼻部のみのばく露を経由した4時間の急性吸入試験で、LC50はフィッシャー・ラットにおいて両性とも>7.9 mg/Lであった。過呼吸、流涙、円背位姿勢、逆毛、汚れたぼさぼさの毛が、ばく露した動物に観察された。雌ラットは、ばく露の間は不活発に見えた。24時間後までに、ほとんどの動物は、昏睡および毛の乱れから回復したように見えた。ばく露された雌(4/5)は、処理後4日までに逆毛が認められ、毛繕いをしなかった。一匹のばく露された雌は、処理後8日目に死亡した。剖検では肉眼的病変は観察されなかった。

L(+)乳酸はウサギ皮膚に対して厳しい刺激性と腐食性があり[OECD TG 404]、モルモット皮膚にわずかに刺激性があり、ブタ皮膚には刺激性はない。L(+)乳酸はモルモットでは皮膚感作性物質でない[Buehler法]。

反復投与毒性は以下のように評価された: 実験I: F344ラット(5匹/性/用量)は、乳酸カルシウムを0、0.3、0.6、1.25、2.5、5%(0、~30、60、125、250、500 mg/kg-bw/dayに相当)で飲水を介して13週間ばく露した。すべてのグループにおいて、基礎飼料(CRF-1)が自由に与えられた。死亡は発生しなかった。対照と比して体重増加のわずかな減少(10%未満)がすべての用量で観察された。いくつかの血液学および生化学のパラメーターの変化が観察された。しかし、組織学的検査ではいずれの処理群においても重篤な毒性学的な所見は示されなかった。実験II:ラットには、0、5、10、20あるいは30%の乳酸カルシウムを含む人工飼料Bが与えられた。最高用量群では対照群と比較して、体重増加が減少した。組織学的検査は、対照群を含めて、すべての群に腎石灰症を明らかにし、発生の程度は用量依存的であった。雌は雄よりこの障害の程度が大きかった。追跡調査では、ラットに8週間CRF-1あるいは人工飼料Bを与えた。腎石灰症は飼料Bを与えたグループのみに観察された。実験IIで観察された腎石灰症は、人工飼料Bの低いCa/P比率(1未満)に依存したことが結論付けられた。

NOAELは500 mg/kg bw/day(最高用量)であった。

Salmonella typhimuriumの複数菌株によるAmes試験では、L(+)乳酸は代謝活性化系の有無の何れの場合も、濃度10,000*で陰性であった。陽性対照も同時にテストされ、適切に応答した。チャイニーズハムスター卵巣細胞を用いるin vitro染色体異常試験では培地が生理学的pH6.4に中和された時、L(+)乳酸は、代謝活性化系の有無にかかわらず染色体異常誘発活性は生じなかった。偽陽性反応は低いpHの結果と見られる。この研究に関して限定的であるが詳細は入手可能であった。結論として、L(+)乳酸は変異原性ではなかった。
一般社団法人 日本化学物質安全・情報センター

F344 ラット（50匹/性/用量）は、飲水中0、2.5あるいは5%濃度で乳酸カルシウムを2年間にわたり与えられた。高用量の動物（両性）は、平均体重増加の著しい減少を示した。臓器特異的毒性に関する証拠はなく、また、発がん性の証拠もなかった。この研究に関して限定的なデータであるが利用可能であった。

生殖毒性エンドポイントのデータは提供されなかった。発生毒性試験において、妊娠6-15日間のCD-1マウスに、0または570 mg/kg bw/日を強制経口ばく露した際、乳酸は母獣および新生仔のいずれにも毒性はなかった。母獣毒性および発生毒性のNOAELは570 mg/kg bwであった。

乳酸は、その低い有害特性に基づき、ヒトの健康に対して有害性を示さない。OECD HPVプログラムが目的とするヒトの健康影響を特徴づけるために、適切なスクリーニング-レベルのデータが利用可能である。

環境 乳酸は環境条件下では加水分解されにくい。大気中では、ヒドロキシル・ラジカルとの反応による間接的な光酸化が推定半減期22時間で生じると予測される。生分解性試験は、20日間で67%の生分解という結果になった；したがって、乳酸は好気状況下で易生分解性である。

大気、水および土壌コンパートメントへの均等かつ連続的分布についてのレベルIIIフガシーモデルの計算は、乳酸が、主として水（46.3%）および土壌（50.5%）へ分布し、わずかに大気（3.2%）および底質（0.07%）へ分布することを示唆する。

VP/WSol推定方法によるヘンリー定数9.6x10^{-9} atm-m^{3}/mol（9.74x10^{-6} hPa-m^{3}/mol）（25℃）は、乳酸の水相からの揮発性は低いと予期されることを示唆する。

-0.62のlogKowに基づき、生物濃縮性は低いと思われ、このことは推定BCF値3（BCFBAF v.3.0）により支持された。

L（+）-乳酸による水生生物種に対する急性毒性試験結果は、次のように確定された：

Fish (Zebrafish; Brachydanio rerio) OECD TG 203 96 h LC50 = 320 mg/L*
Fish (Bluegill sunfish; Lepomis macrochirus) OECD TG 203 96 h LC50 = 130 mg/L*
Invertebrate (Daphnia magna) OECD TG 202 48 h EC50 = 240 mg/L*
Algae (Pseudokirchneriella subcapitata) OECD TG 201 70-h EC50 (growth) = 3500 mg/L
70-h EC50 (biomass) > 2800 mg/L

* 試験溶液は中和されなかった。

乳酸は、その低い有害性に基づき、環境に対して有害影挙を示さない。OECD HPVプログラムの目的とする環境への有害影響を特徴づけるために、適切なスクリーニング-レベルのデータが利用可能である。

ばく露 乳酸およびその補完化学物質のL（+）-乳酸は、製造総量が5100万から1000億1000万ポンド（23133〜49895トン）である。これらの化学物質は、溶剤、pH調整剤として、あるいは、織物や繊維と同様に、基礎有機化品、塗料およびコーティング剤、石鹸および清浄剤の製造を含む多くの産業における中間体として使われる。両化学物質は工業用の場面で、あるいは消费者製品中で使用される。乳酸は天然に食品中に存在しており、食品中の酸味料、毛織物製品の印刷の際の媒染剤、溶剤として、そして織物、皮革および他の用途に使われる。
一般社団法人
日本化学物質安全・情報センター

L(+)−乳酸は哺乳動物における天然の機能性代謝物質であり、そして哺乳類の燃料としての役割がある；したがって、人間と動物は、乳酸に内因的に曝露しているであろう。

製造、加工、使用から得られる環境放出に関する情報に基づき、乳酸の環境曝露が予期される。

商業的用途、消費者用途を含む幅広い用途に基づき、公衆、労働者、消費者および子どもの曝露も予期される。

[著作権および免責事項について]

[著作権]
本資料の著作権は弊センターに帰属します。引用、転載、要約、複写（電子媒体への複写を含む）は著作権の侵害となりますので御注意下さい。

[免責事項]
本資料に掲載されている情報については、万全を期しておりますが、利用者が本情報を用いて行う一切の行為について、弊センターは何ら責任を負うものではありません。また、いかなる場合でも弊センターは、利用者が本情報を利用して被った被害、損失について、何ら責任を負いません。