一般社団法人
日本化学物質安全・情報センター

SIADS in HPV programme & CCAP
SIAM 22, 18/04/2006

初期評価プロファイル（SIAP）
オキソアルコール類（C9～C13）

カテゴリー名：Oxo Alcohols C9 to C13
CAS No 68526-84-1

アルコール類（C8～C10-イソ、C9リッチ）
27458-94-2
イソノニルアルコール

68526-85-2
アルコール類（C9～C11-イソ、C10リッチ）
25339-17-7
イソデシルアルコール

10042-59-8
2-プロピルヘプタン-1-オール

68526-86-3
アルコール類（C11～C14-イソ、C13リッチ）
27458-92-0
イソトリデカン-1-オール

構造式
68526-84-1 CH₃-CH(CH₃)-(CH₂)₆-OH （C9アルコールに基づく；一般構造；本質的にメチル分岐パターンを含む）

27458-94-2 CH₃-CH(CH₃)-(CH₂)₇-OH （一般構造；種々のメチルと/またはエチル分岐パターンを含む）

68526-85-2 CH₃-CH(CH₃)-(CH₂)₇-OH （一般構造；種々のメチル分岐パターンを含む）

25339-17-7 CH₃-CH(CH₂)₄-CH(CH₂)-CH₂-OH （C10アルコールに基づく；一般構造；メチル分岐も含むかもしれない）

10042-59-8 CH₃-CH(CH₂)₄-CH(CH₂)-CH₂-OH （C10アルコールに基づく；一般構造；メチル分岐も含むかもしれない）

68526-86-3 CH₃-CH(CH₃)-(CH₂)₁₀-OH （C₁₃アルコールに基づく；一般構造；種々のメチル基分岐パターンを含む）

27458-92-0 CH₃-CH(CH₃)-(CH₂)₁₀-OH （一般構造；種々のメチルと/またはエチル分岐パターンを含む）

SIAPの概要的結論
カテゴリーの理論的根拠
オキソアルコール類（C9からC13）カテゴリーは、ヒドロホルミル化または、“オキソ”工程により、オレフィンから製造される飽和アルコールの一族である。ヒドロホルミル化は、オレフィンの一酸化炭素および水素との反応でアルデヒドを生成し、続く水素化でアルコールを生成する。カテゴリーのメンバーの炭素原子数は、9から13に渡る。カテゴリーのメンバーは、主に分岐アルキル基を含んでいる。各メンバーは、多異性体製品であり、高純度の飽和1級アルキル基を含み、そして次の基本構造を持っている。

CH₃-R-Ch2-OH、ここでRは分岐異性体である。

オキソアルコール類（C9からC13）カテゴリーの理論的根拠は、メンバーが次の特徴を持つことである。

- 類似の化学構造
- 類似の物理化学的性質
- 同種の環境運命
- 同じ作用機序

一般的に脂肪族アルコールの急性水生毒性は、非極性の麻酔によって生じる。作用機序は、生物学的膜機能の破壊である。直鎖および分岐のノルマル一級アルコールの哺乳動物における代謝経路は全てのカテゴリーのメンバーに対しても類似の反応を含むようであり、その結果、構造的に類似の代謝物となる。
データは、カテゴリーがSIDS指標に対して有効であることを証明しており、データが利用可能でない場合は読み取りが適用された。類似の構造や十分な類似性のある特性を持つ類縁物質類は、カテゴーメンバーの特定の指標を裏付ける際に価値がある。それらは、次のようなアルコール類である、


ヒトの健康直鎖と分岐鎖アルコール類は、吸収、代謝、排泄について類似のパターンを示す。直鎖と分岐の脂肪族アルコール類はいずれも、胃腸管経由で吸収され、血液から急速に消失する。血漿中半減期は、多くの低分子代謝物(例えば、アルデヒド、カルボン酸)がヒトで内在的に存在するので、通常測定するのは難しい。直鎖と分岐鎖アルコール類は、最初対応するアルデヒドに酸化され、さらに、高い能力のNAD+/NADH依存性の酵素により、それらの対応するカルボン酸に酸化され、それから、脂肪酸経由とトリカルボン酸サイクルにより二酸化炭素に代謝される。アルコール脱水素酵素（ADH）は、アルコール類を対応するアルデヒドに酸化することを主に行う細胞質酵素である。アルコール類は、また、ミクロソームとペルオキソームに存在する非ADH酵素によりアルデヒドに酸化され得る。しかし、これらは、一般的にADHより量的に重要でない。

アルデヒド脱水素酵素（ALDH）はアルデヒドを対応するカルボン酸に酸化する。分岐鎖脂肪族アルコール類およびアルデヒドは、ADHとALDHに対する優れた基質であることが示されている。炭素鎖長が増加するにつれて、ALDH仲介酸化の割合も増加する。一つまたはそれ以上のメチル置換を含む分岐鎖アルコール類、アルデヒド類、カルボン酸類の代謝は、分岐鎖上のメチル基の位置により主に決定される。分子量が多い同族体（> C10）ω-、ω-1とβ-の酸化および選択的脱水素化と水和化の組み合わせが進み、極性の代謝物を生じ、グルクロン酸抱合体または硫酸抱合体として尿中に、そしてより少量が糞便中に排出される。これらのように、これらの分岐鎖物質の無毒化のために使われる主要な代謝経路は、主に四つの構造的特徴; 炭素鎖長、および、アルキル置換基の位置、数、大きさによって決定される。

オキソアルコール類（C9からC13）カテゴリー中のほとんどの物質は、分岐鎖アルコール類の混合である。この炭素数内の直鎖と分岐鎖アルコール類中の類似の代謝に基づいて、オキソアルコール類（C9からC13）カテゴリーのメンバーは、上記に述べた直鎖の類縁物質と類似の代謝を行うだろうということが結論される。ファーマコキネティクスに関する研究は、本カテゴリーのメンバーについては行われなかった。

オキソアルコール類（C9からC13）カテゴリーのメンバーは、経口、経皮、吸入と腹腔経路のばく露で低次の毒性を持つ。経口LD50sは>2000から5400 mg/kg bwの範囲、経皮LD50sは、>2600から5010 mg/kg bwの範囲に渡った。飽和蒸気圧で行われた吸入ばく露試験は、一般的に死亡を生じなかった。より小さい直鎖C9アルコール類は例外であるが、試験結果のLC50は3600 ppmを超えていた。オキソアルコール類（C9からC13）カテゴリーのメンバーは、ウサギ皮膚に対して中等度の刺激性であり、そしてウサギの眼に対して通常の刺激性（範囲: 非刺激性から重度の刺激性）であった。さらに、アルコール類C9-C11-イソ、C10リッチ（CAS RN: 68526-85-2）は、可能な限界までの蒸気雰囲気にばく露された雄マウスで中等度の上気道感覚刺激を生じた。限られたデータに基づいて、オキソアルコール類（C9からC13）カテゴリーの皮膚感作性は示唆されない。動物またはヒトで気道感作性の評価に利用できるデータはない。
一般社団法人
日本化学物質安全・情報センター
カテゴリーのメンバーで唯一、2-プロピルヘプタノールが、亜急性毒性試験が行われた。ラット90日試験は、肝臓が主要な標的器官であることを示し、結果としてNOAELは雄で150 mg/kg bw/日、雌で30 mg/kg bw/日（雌が一匹だけペルオキソーム増殖に関連した影響を示した）であった。肝臓、精巣を評価するために計画されたラットによる14日のスクリーニング試験では、イソノナノールとイソデカノール、イソトリデカノールが、144、168、184 mg/kg bw/日の用量でそれぞれ肝臓に最小影響または無影響であり、精巣に影響を生じなかった。利用可能なデータは、オキソアルコール類（C9からC13）カテゴリーのメンバーは、低次の亜慢性毒性を示す可能性が高いことを示唆する。

Salmonella typhimurium並びにEscherichia coliを用いてOECD TG 471に従って、オキソアルコール類（C9からC13）カテゴリーの四つのメンバーで実施された試験は、代謝活性化系の有/無のいずれにおいても、遺伝毒性影響を示さなかった。カテゴリーのメンバーの一つ、イソデカノールは、OECD TG 473に従ってV79チャイニーズハムスター肺線維芽細胞を用いてin vitro染色体異常試験も実施され、代謝活性化系の有/無で変異原性の影響は見いだされなかった。実験の詳細は限られた情報しか利用可能でないが、in vivoアッセイが二つのカテゴリーメンバーで行われ、遺伝毒性影響を示さなかった。さらに、in vivoマウスでの小核試験は、類縁体の直鎖アルコール（1-ドデカノール）で行われ、染色体異常誘発能は見出されなかった。利用可能な限られた試験において影響がないことが見出されていることに基づいて、および類縁体として用いられた類似の直鎖アルコール類のデータに基づいて、オキソアルコール類（C9からC13）カテゴリーのメンバーは、低い遺伝毒性能を持つと考えられる。慢性毒性または発がん性試験は、オキソアルコール類（C9からC13）カテゴリーのメンバーでは、実施されなかった。陰性のin vitroとin vivo遺伝毒性データに基づいてオキソアルコール類（C9からC13）カテゴリーのメンバーは、遺伝毒性発がん能を持ちそうもない。

イソノニルアルコール、イソデカノール、2-プロピルヘプタノール、イソトリデカノールの経口により実施された発生毒性試験は、生殖パラメーターに影響を与えなかった。再吸収の僅かな増加が、いくつかの試験で観察されたが、それは最高用量群であり、また明らかな母獣毒性の存在下でのみ生じた。発生毒性のNOAELsは、144-1440 mg/kg bw/日の範囲に渡っていた。補足情報として、1-ドデカノールは反復投与毒性・生殖発生毒性併合試験で、2000 mg/kg bw/日のレベルで親または仔に影響を示さなかった。さらに、蒸気への吸入ばく露は、1-ノナノール150 mg/m3と1-デカノール100 mg/m3のレベルで生殖パラメーターに統計的に有意な変化を誘導しなかった。イソノナノール、イソデカノールとイソトリデカノールの14日間反復投与試験では、精巣の重量変化は観察されなかった。これらのデータは、オキソアルコール類（C9からC13）カテゴリーのメンバーは、選択的生殖毒性物質ではないという結論を支持する。

環境オキソアルコール類（C9からC13）カテゴリーのメンバーは25℃で液体である。それらのほとんどの物理化学的性質は直接測定により得られた。測定できなかった値は、一連の構成化学物質を最も良く特徴づける化学構造を用いて計算により得られた。カテゴリーのメンバーは、融点が-117℃から-40℃、沸点が202℃から270℃(1,013Pa)、密度が0.832g/cm3から0.846 g/cm3、蒸気圧が0.002から0.054hpa(25℃)、水溶解度が2から240 mg/L、log Kowの引用値が3.4より大きく5.5までの範囲に渡る比較的類似の性質、または、漸進的な変化を示した。開放水面から分子が蒸発する潜在性の尺度であるヘンリー定数(HLC)はカテゴリーメンバーが、もし水圏に放出されても測定可能な速度では蒸発しないだろうと示す(HLCsは3.61から20.0Pam3/molの範囲)。
一般社団法人
日本化学物質安全・情報センター

フガシーモデルレベルⅢを用いた環境分布モデルの結果は、アルコール類（C8 - C10イソ、C9リッチ）イソノナノール、イソデシルアルコール、2-プロピルヘプタン-1オールの水圏区分への高い環境分布を示唆する。モデルはまた、アルコール類（C11-C14イソ、C13リッチ）とイソトリデカノールについて底質区分への高い環境分布を予測する。水生と陸生生息域から大気への蒸発は、オキソアルコール類（C9からC13）は蒸気圧が（<0.06hPa (25℃)）低いので無視できる。しかし、これらの物質は、大気中では、主にヒドロキシルカル（・OH）により仲介される間接的光分解過程により急速に分解する可能性を有し、推定された分解半減期は、約6から9時間（12時間日に基づく）の範囲であり、18から33.6時間（24時間日に基づく）の範囲である。オキソアルコール類（C9からC13）は、大気中で顕著な速度で分解する可能性を持つが、この区分において認めうる程度の分解は起こりそうもない。なぜなら、それらがこの区分に分布する可能性が低いためである。

水中の光分解と加水分解は、水生環境中におけるオキソアルコール類（C9からC13）の変換に寄与しないだろう、なぜなら、それらが光分解と加水分解の反応を受けないためである。

オキソアルコール類（C9からC13）カテゴリーのメンバーの生分解性は、標準的な試験ガイドラインに沿って評価されてきた。これらの試験の結果は、オキソアルコール類（C9からC13）カテゴリーのメンバーは、水生環境中の微生物分解を受けやすく、好気性と嫌気性の両方の条件下で、28日間で60.6%から90-100%の分解性であり、それらは、易生分解性または本質的生分解性であることを示唆する。当該の本質的生分解性物質は、28日間で60%の生分解の基準を超えるが、「易生分解性」の指定に対して必要な10日間ウインドウ内では基準を超えない。以上より、排水処理場内での消失を説明する主なメカニズムは、生分解であり、続いて汚泥への分布、残りの消失の原因は蒸発である。

オキソアルコール類（C9からC13）カテゴリーのメンバー物質は、3栄養レベルをカバーする種々の生物で、中等度から高い急性水生毒性を示すことが判った。実験による急性毒性値は、魚類について0.42から11 mg/L、および無脊椎動物について0.39から17.1 mg/Lの範囲である。藻類について実験的EC50(72hr)は1.60から19.0 mg/Lの範囲である。ある程度の変動があるが、炭素数がC9からC13に増加するにつれて、非極性の麻酔剤と予測される様に毒性が増加することを急性水生毒性データは明確に示す。カテゴリーメンバーの実験による慢性毒性データは利用できない。類縁物質（ドデカノール）の慢性毒性データは、水生無脊椎動物に対して慢性毒性を生じる能力は低いことを示す。ミジンコに対する21日NOELは1 mg/Lであった。推定された慢性毒性値は三つの栄養段階に対して0.03 mg/Lから11.1 mg/Lの範囲である。

カテゴリーのメンバーは、生物変換の生化学的証拠と、実験的に導かれた生物濃縮係数（BCF）が魚類で15から60の範囲であることに基づいて、水生種で生物蓄積する能力は低い。陸生環境では、推定ミミズLC50(16日)値が128から374 mg/kg土壌に渡ることに基づいて低次の毒性を示すことが予期される。

ばく露オキソアルコール類（C9からC13）カテゴリー物質は主に化学的中間体として用いられている。そして付加的応用例は、助溶媒、消泡剤、溶媒抽出、浮遊選鉱のような用途を含む。物理的特性に基づき、主な作業場ばく露は、吸入と皮膚接触を通して生じるであろう。適用例の大部分は、遊離のアルコールを含まない;よって、消費者は使用を通じて間接的にばく露されるだけであり、取り込みは低いと予期されるので、最小限の消費者ばく露が予見される。

SPINデータベースは、カテゴリーメンバーであるアルコール類（C8-C10イソ、C9リッチ）イソノニルアルコールと2-プロピルヘプタノールの信頼出来るデータを含んでいる。イソデカノールオキソアルコール類（C9からC13）を示す。
一般社団法人日本化学物質安全・情報センター

ノール、イソトリデカノール、またはアルコール類 (C11-C14-イソ、C13リッチ) は消費者製品にはリストされていない。アルコール類 (C9-C11-イソ、C10リッチ) の22の調剤が、スウェーデンとデンマークに年間1.1から2.0トンとリストされており、スウェーデンで潤滑油と添加剤に使われる消費者製品も含まれている。アルコール類 (C11-C14-イソ、C13リッチ) は約80の調剤について、スウェーデン、ノルウェー、フィンランド、デンマークそれぞれで年間459、8、0.1、と6.7トンとリストされている。調剤の用途目的は、塗料、ラッカー、ワニス、建設用途、洗剤の界面活性剤と非金属鉱材の製造における中間体を含んでいる。イソトリデカノールは18製品と36調剤が年間1.3トン以下のレベルでスウェーデン、ノルウェー、デンマークにリストされている。これらの調剤と製品は、塗料、ラッカー、ワニスと主に繊維産業および自動車部門における用途を意図している。リストされた内で少なく四つの用途は、消泡剤用である。イソトリデカノールのリストされた36調剤の内、少なくとも21の調剤は0トン(つまり意図して調剤に加えられていない)とリストされている。

製造場所では、作業環境におけるオキソアルコール類 (C9からC13)への潜在的ばく露は、直接的な環境への放出がないので低い。オキソアルコール類 (C9からC13)カテゴリーに含まれる物質の環境濃度に関する情報はない。本来、製造中に放出されたオキソアルコール類 (C9からC13)は下水処理場(WWTF)に入り、そこで急速に生分解されるかまたは、下水汚泥に吸着得る。下水汚泥は、ヨーロッパでは主に焼却されるが、米国では焼却されるか埋め立てられる。埋め立ては、Koc値により示唆されるように、オキソアルコール類は土壌を通して移動する能力が低いので、更に移動することはしっかり妨げる。加工、保管および取り扱い作業は、密閉された施設内で実施される。溢れこぼれた部分は集められ、処理(於WWTF)される。製造プラントやポンプ場からの空気は集められ焼却される。

勧告と勧告の理由、推奨される追加作業の性質

ヒトの健康

オキソアルコール類 (C9からC13)カテゴリー中の物質は、現在、追加作業の優先順位は低い。それらは、ヒトに対して、眼と皮膚刺激性を除いて、低い有害性を示す性質を有する。これらの有害性は過逆的影響であり、追加作業を正当化しない。しかし、それらのことは化学的安全性の専門家と使用者により留意されるべきである。諸国は労働者と消費者に対するばく露評価と、もし必要ならリスク評価を実施することが招請される。

環境

C9とC10の鎖長を持つ化学物質（CAS No. 68526-84-1、27458-94-2、68526-85-2、25339-17-7、10042-59-8）は環境に対する有害性（急性水生EC/LC50値が1と100mg/Lの間）示す性質を有する。しかし、それらの急速な生分解と生物蓄積性の限定された能力のために環境に対する追加作業の優先順位は低い。鎖長C13の化学物質（CAS No. 68526-86-3、27458-92-0）は、1mg/L以下の濃度で急性水生影響を示す。それ故、追加作業の候補であるべきである。さらに諸国はばく露評価と、もし必要ならリスク評価を実施することが招請される。

[著作権および免責事項について]

[著作権]
本資料の著作権は弊センターに帰属します。引用、転載、要約、複写(電子媒体への複写を含む)は著作権の侵害となりますので御注意下さい。

[免責事項]
本資料に掲載されている情報については、万全を期しておりますが、利用者が本情報を用いて行う一切の行為について、弊センターは何ら責任を負うものではありません。また、いかなる場合でも弊センターは、利用者が本情報を利用して被った被害、損失について、何ら責任を負いません。