初期評価プロファイル (SIAP)

アミノカルボン酸系キレート剤カテゴリー

<table>
<thead>
<tr>
<th>CAS No.</th>
<th>物質名</th>
</tr>
</thead>
<tbody>
<tr>
<td>139-33-3</td>
<td>Disodium EDTA; Na₂EDTA</td>
</tr>
<tr>
<td>139-89-9</td>
<td>Trisodium HEDTA; Na₃HEDTA</td>
</tr>
<tr>
<td>140-01-2</td>
<td>Pentasodium DTPA; Na₅DTPA</td>
</tr>
<tr>
<td>1939-36-2</td>
<td>PDTAH</td>
</tr>
<tr>
<td>15708-41-5</td>
<td>Fe(III)NaEDTA</td>
</tr>
<tr>
<td>16485-47-5</td>
<td>Fe(II)HEDTA</td>
</tr>
<tr>
<td>18719-03-4</td>
<td>Fe(III)HEDTA</td>
</tr>
<tr>
<td>20824-56-0</td>
<td>(NH₄)₂EDTA</td>
</tr>
<tr>
<td>21265-50-9</td>
<td>(NH₄)₄EDTA</td>
</tr>
<tr>
<td>67859-51-2</td>
<td>Zn(NH₄)₂EDTA</td>
</tr>
</tbody>
</table>

注: 上記構造式は金属イオン、Na⁺、K⁺、NH₄⁺、Zn²⁺、Ca²⁺、Fe²⁺及び/又はFe³⁺を有する錯体又は非錯体である可能性がある。
エチレンジアミン、プロパンジアミン、及びジエチレントリアミン系キレート剤の代表的構造

representation of structures:

- Trisodium HEDTA (139-89-9)
- Trisodium (2-Hydroxyethyl)ethylene diamine Triacetate
- PDTA-H4 (1939-36-2)
- Propanediamine Tetraacetic Acid
- EDTA (60-00-4)
- Pentasodium DTPA (140-01-2)

SIARの結論の要旨
カテゴリーの類似性/理論的根拠
アミノカルボン酸系キレート剤カテゴリーメンバーは、共通の官能基を含む類似の分子構造を持つ。メンバー全ては、窒素が結合した3～5酢酸グループを有するエチレンジアミン、プロパンジアミン又はジエチレントリアミン系キレート剤である。
一般社団法人 日本化学物質安全・情報センター

分子構造を持つ。したがって、カテゴリーメンバーは共通のアミノ酸グループを持つ。さらに、エチレンジアミン骨格シリーズの1つのメンバー(ヒドロキシエチルエチレンジアミン又はHEDTA)は、2-ヒドロキシエチル基が酢酸基と置き換わり、それ故、酢酸基の数は4ではなく3となる。

エチレンジアミン構造は4つの酢酸基(EDTA)又は3つの酢酸基と1つのヒドロキシエチル基のどちらかを持つ。プロパンジアミン構造は、4つの酢酸基を持つ。最終的に、ジエチレントリアミン構造は5つの酢酸基を持つ。カルボン酸基は、フリーのカルボン酸基又は1つ以上の水素がアンモニウム又は金属塩で中和されたカルボン酸アニオンのどちらかの構造をとる可能性がある。

水素が置き換えられない場合(EDTA、PDTAH4)、キレート剤は分子内塩又は双性イオンとして存在する。もっとも一般的に、当該物質はアンモニウム又は金属塩として存在する。したがってカテゴリーメンバーの全ては、同一の官能基(ヒドロキシエチル基を除く)を持つ。アミン上の複数のカルボン酸基の存在が、ユニークな金属イオンキレート又は封鎖特性を持つキレート剤を提供する。この共通の性質は、キレート剤の水生及び哺乳動物毒性の評価及び1つのカテゴリーとして考察することの根拠付けにおいて重要な特性である。

構造及び化学的類似性に基づく、このキレート剤カテゴリーに関する活性の共通作用機序は、これらの密接に関連する化学物質に対するカテゴリーのための基本原則である。溶液中のイオンの除去や添加をするキレート剤の能力が、これらの化学物質が毒性を示す作用機序となる。環境運命及び生態及び哺乳動物毒性プロファイルは、そのカテゴリー内で一致している。カテゴリーメンバーは加水分解に対して非常に安定であり、カテゴリーメンバーの大部分の化合物は、主に又は唯一、水溶液の状態で流通している。水路に排出されたカテゴリーメンバーは環境コンパートメントで分解されないで残るだろう。土壌又は底質に排出された場合、カテゴリーメンバーは、高い水溶性及び土壌移動性を示すだろう。この挙動は、分子構造中に複数のカルボン酸アニオン基を持つことに、そしてカテゴリーメンバーの明らかな高い水溶性及び無視できる蒸気圧によって支持される。環境生分解性に関し、このカテゴリーに属する大部分のメンバーは実際に評価されたが、標準ラボの結果と類似又は推察される様に、全般的に難分解性であった。しかしながら、最近の試験結果は、EDTA、カルシウムEDTA及びNa2EDTAがある条件下で生分解すると示している。

キレート剤は水生及び哺乳動物に対する直接的毒性はないが、ミネラルバランスへの影響は長期にわたり継続するといったことを示すしっかりとした証拠と、カテゴリー内のキレート剤の主鎖構造が金属に対して類似の親和性を持つという事実が、これらのキレート剤を1つのカテゴリーとして取り扱うこと(の正当性)を支持する。アンモニウム、ナトリウム、カルシウム、第二鉄又は第一鉄、又はカリウムの存在による毒性のわずかな違いは、これら金属との親和性及び生物に金属を供給するそれらの能力によって説明できる。金属リガンド複合体の化学的平衡及びキネティク特性に従って、フリーの金属イオンの一定部分は、常に水溶液中に存在する。これは特に水生システムにとって重要である。EDTA及びPDTAH4の様な非複合化キレート剤は、溶媒に水素イオンを供与する(pHを低下させる)と予想され、これらの環境中に金属キレートをもたらす。第二鉄を含んだキレート剤は、第二鉄イオンの親和性が他の多くのイオンより強いので低濃度でミネラルバランスに有意な影響を与えると予想されない。Zn(NH4)2EDTAは亜鉛バランスで(NH4)2EDTAよりも影響はないと予想される。ナトリウム、カリウム及びカルシウムを含んだキレート剤は、中程度の毒性(EDTAと鉄又は亜鉛含有キレート剤の間)を示すことが予測される。なぜなら、キレート剤
一般社団法人
日本化学物質安全・情報センター
は、酸ほど
pH
に影響を与せず
、また、必須イオンを提供するが、キレート剤によって
供与される量で
毒性
はなく、一方で、Zn
2+
及び
Fe
2+
又は
Fe
3+
のような必須イオン
も
キレートする
ことが予想されるからである。
データはこのカテゴリー
における
キレート剤の毒性プロファイル
が
一般的にこの
パターン
に
従い
、キレート剤が
錯体を形成するイオンのタイプ及び
どのイオンに対する
親和性
か
によって
予想
されることを示す。
EDTA
と
比較した
DTPA
、
PDTA
及び
HEDTA
の金属キレートの
LogK
値
(μ=0.1M, T=20
℃)

| キレート剤 | Fe
3+ | Zn
2+ | Fe
2+ | Ca
2+ | Na
+ |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>EDTA</td>
<td>25.1</td>
<td>16.5</td>
<td>14.3</td>
<td>10.7</td>
<td>1.66</td>
</tr>
<tr>
<td>DTPA</td>
<td>28.6</td>
<td>18.3</td>
<td>16.5</td>
<td>10.7</td>
<td></td>
</tr>
<tr>
<td>PDTA</td>
<td>21.6</td>
<td>15.3</td>
<td>13.4</td>
<td>7.3</td>
<td></td>
</tr>
<tr>
<td>HEDTA</td>
<td>19.8</td>
<td>14.5</td>
<td>11.6</td>
<td>8.0</td>
<td></td>
</tr>
</tbody>
</table>

カテゴリーアプローチを用いて、適切に試験されたメンバーから、入手できるデータのないメンバーまで
読み取り法が実施された(以下参照)。対イオンの毒性は、読み取り法で考慮されたが、読み取り法で決定
的な因子にはならないかもしれない。常に、毒性の最も高い物質をベースに、毒性データのない物質に対し
て読み取り法を行うことによって安全側アプローチが用いられる。

2つの類縁物質、EDTA (CAS No. 60
00
4)
と
Na
4
EDTA (CAS No. 64
02
8)
は、以前、OECD HPV
化学品プロ
グラム
(SIAM 18)
で評価されている。そのデータは、
http://www.oecd.org/env/hazard/data/
でみることがで
きる。対イオンのデータは、OECD HPV
アセスメント
(SIAM 18)
で評価され、複数のカルシウム塩化物、ア
ンモニアカテゴリー、亜鉛塩化物カテゴリー、及び鉄塩化物カテゴリーに関する結果は
http://www.oecd.org/env/hazard/data/
でみることができる。

アミノカルボン酸系キレート剤カテゴリー
の生態毒性エンドポイントに用いられる読み取り法
物質
CAS No.
魚類の急性毒性
水生無脊椎動物の急性毒性
水生植物の毒性

<table>
<thead>
<tr>
<th>物質名</th>
<th>CAS No.</th>
</tr>
</thead>
</table>
| (NH
4
)2
EDTA | 20824
-56
-0 |
| (NH
4
)4
EDTA | 22473
-78
-5 |
| Zn(NH
4
)2
EDTA | 67859
-51
-2 |
| Fe(III)NaEDTA | 15708
-41
-5 |
| Na2
EDTA | 139
-33
-3 |
| Na3
HEDTA | 139
-89
-9 |
| Fe(III)NH
4
EDTA | 21265
-50
-9 |
| Fe(II)HEDTA | 16485
-47
-5 |
| Fe(III)HEDTA | 17084
-02
-5 |
| PDTA4 | 1939
-36
-2 |
| Na4
PDTA | 18719
-03
-4 |
| Na5
DTPA | 140
-01
-2 |

類縁物質
EDTA
|
| CaNa
2
EDTA | 62
-33
-9 |
| Na3
EDTA | 150
-38
-9 |
| Na4
EDTA | 64
-02
-8 |
| K5
DTPA | 7216
-95
-7 |

\[\text{X} = \text{データを利用できる、}\ O = \text{読み取り法、}\ - = \text{この化学品のエンドポイントは扱われていない}\]
一般社団法人
日本化学物質安全・情報センター

物質
CAS No.
S1 R2
生殖 損害
発達 神経 毒性
遺伝 毒性
遺伝子 突然 変異
(in vitro)
染色体 変異
(in vitro)
In vivo

提供物質
(NH4)2 EDTA
20824-56-0
Na3 EDTA
CaNa2 EDTA/Na2 EDTA
EDTA/Na3 EDTA

(NH4)4 EDTA
22473-78-5
Na3 EDTA
CaNa2 EDTA/Na2 EDTA
EDTA/Na3 EDTA
WoE
−

Zn(NH4)2 EDTA
67859-51-2
Na3 EDTA
CaNa2 EDTA/Na2 EDTA
EDTA/Na3 EDTA
WoE
−

Fe(III)Na EDTA
15708-41-5
CaNa2 EDTA/Na2 EDTA
X X− X
Na3HEDTA
139-33-3
WoE
−

Fe(III)NH4 EDTA
21265-50-9
CaNa2 EDTA/Na2 EDTA
Fe(III)Na EDTA
WoE
−

Fe(II)HEDTA
16485-47-5
CaNa2 EDTA/Na2 EDTA
Fe(III)Na EDTA
WoE
−

PDTA
1939-36-2
Na EDTA
PDTAH
PDTAH
PDTAH
WoE
−

Na5 DTPA
140-01-2
PDTAH
DTPA
DTPA
DTPA
WoE
−

類縁物質
物質
CAS No.
反復投与 毒性
生殖 影響
発達 毒性
遺伝 毒性
遺伝子 突然 変異
(in vitro)
染色体 変異
(in vitro)
In vivo

物理−化学的特性
本カテゴリーメンバーは、分子量292〜503、純品又はそのままの(水添加のない)状態で全て固形の颗粒状の材料であり、類似の物理/化学的性質を持つ。金属有機塩、又は分子内塩のため、カテゴリーメンバーの全てが十分な加熱(一般的に200℃以上の温度)で融解前に分解する。したがって真の融点は適用できない。金属塩であるキレート剤は分離した中性分子として存在せず、揮発すること、明確な蒸気圧を示すこと、又は沸騰することはない。したがって、蒸気圧及び沸点のデータはこのようなキレート剤に適用することはできず、決定されない。ヘンリー定数も、無視できると予想される。中性分子(金属塩でない)として存在するキレート剤は蒸気圧を示すことができるが、この場合の蒸気圧はきわめて低い。全てのカテゴリーメンバーは、水と混和できるために高可溶性(一般的に10,000 mg/L以上)であるが、有機溶媒に不溶であり、したがってネガティブな分配係数(log Kows)を持つ。

ヒトの健康
トキシコキネティクス、代謝及び分配
カテゴリーメンバー及び類似物質の全てのトキシコキネティックデータは利用できる。吸入経路に関して、エアロゾル化したDTPA及びその塩は、呼吸器系から体循環に吸収されるが、吸収の程度は沈着した部位に依
一般社団法人
日本化学物質安全・情報センター

存する。経口及び経皮吸収は小さくなると予想される。ヒトの皮膚に対する放射性同位体標識した
\(\text{CaNa}_2 \text{EDTA} \) の経皮処理は、
0.001\%が尿中に検出され、血中には
検出されなかったことを示した。

\(\text{CaEDTA} \)、\(\text{CANa}_2 \text{EDTA} \)、\(\text{Na}_2 \text{EDTA} \)、\(\text{DTPA} \)及びその塩を用いた試験では、これらの複合体が経口投与後わずかに吸収されることを示す。

EDTAとその塩は、循環系を通じて輸送中に結合された金属及びフリーイオンカルシウムと共に、腎臓経由で
95\%及び胆汁によって5\%が体から排出される。いずれの
EDTA塩が投与されても、\(\text{in vivo} \)で金属イオンをキレートする可能性が高い。

急性毒性スポンサーのついた及び/又は類似物質の吸入、経口及び経皮経路のばく露による急性毒性データが利用できる。一部のキレート剤の粉塵が濃縮された空気を用いた限定的な急性吸入毒性データは、全般的にはラットに影響を示さなかった。しかしながら、雄ラットに対する\(\text{Na}_2 \text{EDTA} \)のダストエアロゾル吸入試験において、
6時間/日で5日間にわたり、30、300又は1,103\(\text{mg/m}^3 \)でのばく露に晒された結果、全ての濃度レベルで
有害な影響が示された。死亡は、
1,103\(\text{mg/m}^3 \)での単回6時間ばく露後において観察された。これらの影響は
14日間の回復期間後、生存した動物においては完全に戻った。

Fe(III)NH\(_4\)\(_4\)EDTA、PDTAH\(_4\)、Na\(_4\)PDTA、及びK\(_5\)DTPAを用いたラットの急性経皮毒性試験は
1,800から2,000\(\text{mg/kg} \)の範囲にLD\(_{50}\)値を示した。ラットで
(NH\(_4\)\(_4\))\(_2\)EDTA(経口LD\(_{50}\)1870 \(\text{mg/kg bw} \)以上)
、Fe(III)(NH\(_4\))\(_2\)EDTA(経口LD\(_{50}\)920 \(\text{mg/kg bw} \)以上)及び
Na\(_4\)EDTA(経口LD\(_{50}\)は1658 \(\text{mg/kg bw} \)と等量)、経口LD\(_{50}\)値
EDTA、(NH\(_4\)\(_2\)EDTA、Zn(NH\(_4\))\(_2\)EDTA、
CaNa\(_2\)EDTA、Na\(_2\)EDTA、Na\(_3\)EDTA、Fe(III)NaEDTA、
Na\(_3\)HEDTA、Fe(III)HEDTA、PDTAH\(_4\)、Na\(_4\)PDTA、
Na\(_5\)PDTA及びK\(_5\)DTPA]は、2000 \(\text{mg/kg bw} \)以上であった。

LD\(_{50}\)値付近の高用量で、呼吸困難、下痢、及び
痙攣性歩行からなる臨床所見が観察された。

刺激性及び感作性アミノカルボン酸ベースのキレート剤は、ウサギの無傷な皮膚に対して無刺激性から中程度の刺激性、眼に対して低~中程度の刺激性である。刺激性の程度はそれぞれの塩の\(\text{pH} \)に関係する。したがって、
EDTAジアンモニウムやジナトリウムカテゴリーのようなより酸性のメンバー、及び
PDTA・4ナトリウムやPDTA・5ナトリウム塩のようなより塩基性のカテゴリーなメンバーは本質的に強い刺激性を持つ。アミノカルボン酸ベースのキレート剤は、マウス及びモルモットの試験に基づけば、皮膚感作性は示さない。

反復投与毒性: \(\text{Na}_2 \text{EDTA} \)、PDTAH\(_4\)、Fe(III)NaEDTA、Na\(_3\)EDTA、CaNa\(_2\)EDTA、K\(_5\)DTPA、及び
Na\(_5\)DTPAを用いた経口反復投与試験の
信頼できるデータが存在する。観察された毒性は、重要な金属種、もっとも顕著なのはカルシウム及び亜鉛、のキレート化の結果として引き起こされる金属栄養の欠乏が原因である。生理学的に実際的な条件下、様々なカテゴリーの塩は親キレート剤の解離定数に基づきイオン化する。したがって1つの特定の親、例えば
EDTA又はPDTA、の全ての塩は、親キレート分子固有のキレート強度に
基づき\(\text{in vivo} \)で金属イオンをキレートすると考えられる。亜鉛の場合のように、欠乏は閾値効果を示すと考えられ、ばく露用量及び期間の両方が長期間投与で観察される総合的な毒性に対する重要な因子と推察される。

13週間の反復投与毒性試験で
\(\text{Na}_2 \text{EDTA} \)(0、1、5、10\%)を摂餌したラット(雌雄)は最高用量で死亡した。
さらに、5\%(約4,206 \(\text{mg/kg bw/day} \))以上の投与で摂餌量の低下(10\%で痩削)及び下痢が認められ
た。
NOAELは1\%(約692 \(\text{mg/kg bw/day} \))であった。高用量レベルの用量設定試験は、ヘモグロビン及びヘマトクリット濃度の低下と共に、下痢、痩削、体重低下、そして時折、食道及び前胃で不全角化が示された。
一般社団法人
日本化学物質安全・情報センター

Na\textsubscript{3}EDTA (0, 3,750, 又は 7,500) のラット及びマウス(雌雄)における 2年間の生物試験で、NOAEL は 7,500 ppm (ラットで試験された最高用量の約 500 mg/kg bw/day 及びマウスでの約 938 mg/kg bw/day) に決定された。

2年間の摂餌試験において、CaNa\textsubscript{2}EDTA を 0, 50, 125, 250 mg/kg bw/day を摂餌したラットは、1年までに行動、外見、成長、寿命又は血液学に影響を示さなかった。1年後、血液学的パラメーターに漸減傾向が示された。検査された何れの器官においても病理学的所見、器官重量の変化、又は曝露に関連した病巣は認められなかった。NOAEL は 250 mg/kg bw/day (試験された最高用量) であった。

31日間の摂餌試験において、CaNa\textsubscript{2}EDTA (0, 0.3, 1.0, 3.0, 又は 5.0) % を摂餌した雌ラットは、5.0% (約 3,636 mg/kg bw/day) で体重増加量の低下を示した。器官重量の影響は観察されなかった。NOAEL は 3.0% (約 2,216 mg/kg bw/day) であった。

PDTAH\textsubscript{4} (0, 30, 100, 又は 300) mg/kg bw/day) のラット(雌雄)における 14週間反復投与毒性経口胃管強制試験で、処理期間中、尿中の亜鉛濃度が雄では増加したが、雌では変化は認められなかった。尿中亜鉛濃度の増加は、他の処理に関連した所見が観察されなかったので、全身毒性との関連性は考えられなかった。NOAEL は 300 mg/kg bw/day に決定された。

28日試験 (OECD TG 407) において、PDTAH\textsubscript{4} (0, 100, 500, 又は 1,000) mg/kg bw/day) を胃管強制で投与されたラットは、1,000 mg/kg bw/day で死亡がみられた。雄ラットで、アルファ 2αグロブリン腎障害に類似した硝子滴形成が 500、及び 1,000 mg/kg bw/day で観察された。他の影響は観察されなかった。NOAEL は 500 mg/kg bw/day と決定された。

他の 28日間の試験で、PDTAH\textsubscript{4} (0, 100, 300, 又は 1,000) mg/kg bw/day) は 1,000 mg/kg bw/day で死亡がみられた。300 mg/kg bw/day で、病理組織学的所見では 2匹の雌で胸腺萎縮、骨髄萎縮及びうっ血が示され、血清中の亜鉛濃度が顕著に減少(対照の 50%) した。100 及び 1,000 mg/kg bw/day で、尿の亜鉛濃度は対照群より高かった。他の有害な所見は観察されなかった。NOAEL は 100 mg/kg bw/day と決定された。

31日及び 61日試験で、Fe(III)NaEDTA まで 86.15 mg/kg bw/day まで摂餌した雄ラットは血漿中のナトリウム及びカルシウム濃度が減少したが、いずれの器官毒性も示されなかった。NOAEL は 86.15 mg/kg bw/day (試験した最高濃度) であると考えられた。用量依存的に肝臓、脾臓及び腎臓に鉄が蓄積したが、これはいずれの臓器でも鉄分過剰又は鉄毒性をもたらさなかった。

K\textsubscript{5}DTPA の 28日反復投与経口胃管強制試験で、0、83、333 又は 1,330 mg/kg bw/day を投与されたラットは、1,330 mg/kg bw/day で死亡した。報告された他の影響には、血清中のカリウム濃度の増加、体重低下、臨床所見及び、下痢が含まれた。重篤性の低い影響が 333 mg/kg bw/day で観察された。NOAEL は 83 mg/kg bw/day であった。

28日飲水試験で、ラットは 0、600、3,000 又は 12,000 ppm の Na\textsubscript{5}DTPA が投与された。体重減少及び尿路の病理組織学的変化は 12,000 ppm 及び 3,000 ppm で観察された。NOAEL は 600 ppm (約 75 mg/kg bw/day) であった。

遺伝毒性

代表的なキレート剤カテゴリーメンバーの in vitro 試験 [Na\textsubscript{2}EDTA, Na\textsubscript{3}EDTA, PDTAH\textsubscript{4}, Na\textsubscript{3}EDTA, Fe(III)NaEDTA, 並びに Na\textsubscript{5}DTPA] 及び in vivo 試験 [Na\textsubscript{2}EDTA, Na\textsubscript{3}EDTA 及び Fe(III)NaEDTA] から入手できるデータは、これらの材料が一般的に in vitro 又は in vivo での遺伝子変異又は染色体異常を誘発しないことを示している。一部のカテゴリーメンバーについて報告された in vitro 及び in vivo でのいくつかの陽性結果があるが、これらの陽性作用は pH 変化の閾値機序及び亜鉛のような重要な栄養金属のキレート化による。証拠の重みは、アミノカルボン酸ベースにしたキレート剤カテゴリーは遺伝毒性の危険性を示さないという結論に導く。

発がん性

マウス及びラットを用いた Na\textsubscript{3}EDTA・3水和物の経口 2年間試験は、発がん性の証拠を示さなかった。アミノカルボン酸のキレート剤の可能性に注目される
一般社団法人
日本化学物質安全・情報センター

ノカルボン酸ベースのキレート剤のカテゴリーメンバーに発がん性は予測されない。

生殖毒性(生殖及発生毒性)
生殖毒性データはCaNa\textsubscript{2}EDTA、Na\textsubscript{2}EDTA及び、PDTAH\textsubscript{4}のばく露による生殖への影響の程度を評価したものがある。有害な影響を立証するための生殖腺器官の組織学的検査を含むNa\textsubscript{3}EDTAの慢性試験が、生殖器官への有害な影響もないことを示した。非ガイドライン慢性試験で、有害な臨床的、組織学的、血液学的、又は生殖的な影響は、0、50、125又は250mg/kg bw/dayのCaNa\textsubscript{2}EDTAを摂餌したラット4世代にわたって示されなかった。生殖毒性のNOAELは、250mg/kg bw/day（試験した最高用量）であった。ラットにおける二世代生殖毒性試験からの証拠の重篤は、1\%Na\textsubscript{2}EDTA（約920mg/kg bw/day）の摂餌が生殖に影響をもたらさなかったことを示したが、5\%（4,600mg/kg bw/day）で同腹児は産出されなかった。生殖毒性のNOAELは920mg/kg bw/dayであった。

発生毒性データは、EDTA、CaNa\textsubscript{2}EDTA、Na\textsubscript{2}EDTA、Na\textsubscript{3}EDTA及びNa\textsubscript{5}DTPAについて利用できる。多世代及び出生前発生毒性試験のデータは、発生影響が母体毒性の存在下で観察され、血漿亜鉛濃度に関連することを示唆する。発生毒性試験は、EDTA、Na\textsubscript{2}EDTA及びCaNa\textsubscript{2}EDTAの特異的胎児毒性及び催奇形性を示し、1,000mg/kg bw/dayのLOAELが決定された。同腹児及び有意に低い胎児体重の割合の増加は胎児発生に対する障害性を示す。奇形のパターンは、口蓋裂、重篤な脳の奇形、眼球異常、小顎又は無顎、合指、内反足、及び、尾異常を含む。これらの影響は、母体毒性用量濃度を用いた試験で示されている。発生影響を引き起こす機序は亜鉛欠損を引き起こす亜鉛枯渇を介して生じるとみなされる。これらの影響は酸又は、ナトリウム又はカルシウム塩が投与されるかどうかに依存していない。非-ガイドライン出生前発生毒性試験において、ラットは妊娠7~14日に1,245mg/kg b.w/day用量のNa\textsubscript{3}EDTAを単回投与された。臨床的影響として、処理中、母動物の下痢（動物の35\%）及び体重増加量の低下が認められた。母体毒性のNOAELは設定されなかった。同腹児のサイズ、着床後の損失、性比、胎児体重、又は、死亡率に対する処理の影響はなかった。胎児異常の発生率に関して処理の影響は示されず、発生毒性のNOAELは1,245mg/kg bw/dayであった。出生前発生毒性試験(OECD TG 414)において、ラットは0、100、400又は1,000mg/kg bw/dayのNa\textsubscript{5}DTPAを（胃管強制で）投与された。400mg/kg bw/dayで、胎児の骨格変異及び遅延（13番目の肋骨短形又は欠損、頸肋の痕跡、骨化遅延）を有する胎児の総数に統計学的に有意な増加があった。1,000mg/kg bw/dayで、中間用量で観察された影響に加えて、同腹児サイズの低下及び骨格奇形数の増加（胸椎及び腰椎及び二分胸骨分節の欠落）があったが、内蔵又は外部奇形はなかった。この用量は、母体体重増加率（補整）の低下も示された。母体毒性のNOAELは400mg/kg bw/dayであり、発生毒性のNOAELは100mg/kg bw/dayであった。アミノカルボン酸ベースのキレート剤カテゴリーのメンバーは、通常の栄養条件下で予期されない金属欠乏のない場合に生殖及び発生影響を示すことは予期されない。
アミノカルボン酸ベースのキレート剤カテゴリーメンバーは、ヒトの健康有害性（皮膚及び眼刺激性、反復投与毒性及び生殖/発生毒性）を示す特性を有する。しかしながら、これらの影響は金属のキレート化及び金属の欠乏に関連するその後の毒性学的影響と関連あり、したがって、著しいばく露がある場合のみに唯一ヒトに関連する有害性が考えられる。OECD共同化学品プログラムの目的のため、ヒトの健康有害性を特徴付けるのに適切なスクリーニングレベルのデータが利用可能である。

環境光分解試験データ（EDTA、Na₄EDTA、及びFe(III)NaEDTA）は、これらのキレート剤が水圏に存在する場合、光によって速やかに分解される。二酸化炭素、ホルムアルデヒド、N-カルボキシメチル-N,N-エチレンジグリシン（ED3A）、N,N-エチレンジグリシン（N,N'-EDDA）、N-カルボキシメチル-Nアミノエチレンジグリシン（N,N-EDDA）、イミノ二酢酸（IDA）、N-アミノエチレンジグリシン（EDMA）及びグリシンがEDTAモノナトリウム鉄の主な光分解産物として特定された。酢酸残基の分離は重要な転換段階であることが特定された。キレート剤による鉄複合体の形成は、水生環境における光分解の主要な経路であると考えられる。第二鉄塩は環境に存在し、このカテゴリーのキレート剤は容易に対イオンが第二鉄イオンに取って代わるので、これらの物質は水生環境において光分解すると予期される。EDTA及びDTPAの両方が1:1の第二鉄複合体の光分解速度は、これらの複合体の水溶液を北緯60°のスペクトルに相当する光で照射した後、算出された。これらの速度はEDTA及びDTPA複合体についてそれぞれ11.3及び8.04分の半減期に相当する。試験条件は仮想のため、太陽光及び曇天の変化、水の不透明度及び深さの変化を考慮した自然の水路における実際の条件は、より長い半減期とされることがある。スウェーデンのパルプ及び製紙工場からの排水を溶す水生環境の中のEDTA及びDTPAの運命を評価した結果、これらのキレート剤の消失速度は太陽光の強度に依存し、光がEDTAよりDTPAにより強く作用することが分かった。アミノカルボン酸ベースのキレート剤カテゴリーメンバーは全て水に安定であり、ほとんどの市販のキレート剤は水溶液として販売されている。その物質は水溶性の高い塩であり、分子構造に加水分解を受ける官能基はない。大気中で分解を引き起こすヒドロキシルラジカルはキレート剤のカテゴリーメンバーに関しては評価できない。なぜなら、キレート剤は塩であり、したがって有意な蒸気圧はないので、このエンドポイントはカテゴリーメンバーについて適用できない。水路に排出されるカテゴリーメンバーはこの環境コンパートメントで溶解したままの可能性が高い。もし土壌又は底質に排出された場合、カテゴリーメンバーは明らかに高い水溶性及び土壌移動性を示す可能性が高い。この挙動は分子構造における多価カルボン酸アニオン基の存在に基づき、ほとんどのカテゴリーメンバーの高い水溶性及び無視できる蒸気圧によって裏付けられる。EPAのEPIWINフガシーモデルレベルIIIモデリングが、カテゴリーメンバーについて実施（SIARを参照）されている。その結果は、大気に無視できる分配、及び水圏に顕著な分配という矛盾のないものであった。レベルIIIフガシーモデルはイオン化した有機塩について十分に検証されていないので、その結果は注意してみなければならない。既存の生分解性試験データは、標準的ラボ試験において、カテゴリーメンバーが土壌又は水中で易生分解性でないことを示す。馴化微生物を用いる試験は、EDTA、CaNa₂EDTA、Na₂EDTA、DTPA、Fe(III)NH₄EDTA及びFe(III)NaEDTAがある一定の条件（例えば、わずかなアルカリ性pH及び長期保持時間）下で生分解されることを示す。ある試験は、EDTAの99%以上が産業用排水処理施設で生分解されていることを示し、この
一般社団法人
日本化学物質安全・情報センター

結果は、ラボ試験法が環境における生分解性を過小評価している可能性があることを示唆している。これら
の条件は、自治体の排水処理施設（WWTP）にないという証拠がある。したがって、自治体の排水処理施設
で生分解は起こらないと推定される。分解が観察されなかったということは、モニタリング試験によって裏
付けられる。汚泥への吸着又は揮発のどちらも予期されないので、広く拡散したEDTAの100%は水圏に排出
されると予測される。しかしながら、例えば、食品又はパルプ及び製紙産業によって用いられるEDTAは、
生物学的に分解され、またされ得る。産業用WWTPはしばしば弱アルカリ条件及び長期汚泥滞留時間で操作
される。対イオンがキレート剤の生分解に影響を及ぼす。特殊な菌株はCa、Mg及びMnのような熱力学的安
定定数10^12以下の金属-EDTA錯体を分解するが、Cu及びFeのような熱力学的安定定数10^12以上の金属-
EDTA錯体は分解しないと特定されている。別の菌株は、Mg、Zn、Mn、Co又はCuイオンと錯体
を形成した時にEDTAを分解するが、錯体を形成していないか、Ca、Ni又はFe(III)イオンと錯体を形成している場合に
は、EDTAを分解しない。

EDTAの生分解性に有利に働く条件は、カテゴリーの他のメンバーについても生分解に導くことが期待される。第二鉄を含むキレート剤は生分解に最も耐性があると予想されるが、光分解を受けやすい。

試験用培地のpHは、キレート剤塩の特定の水生毒性に影響を与えることがある。例えば、アンモニウム塩においては、pH5~8の範囲の一般的な水においては通常低毒性だが、pHが高くなるとフリーのアンモニアにより毒性は高くなる。

EDTA塩の水生毒性試験は、通常、軟水においてより高い毒性を、硬水においてその毒性が低下するといった水硬度及び毒性の間の関係性を示した。この傾向は、カルシウムのキレート化に起因するものである。

魚類についての短期試験において、EDTA及びNa-EDTAは非錯体型においてより強い毒性を示す。これらの化学物質が、キレート剤に対する化学量以上存在する場合のみ、このような状況は生じ得る。そのような状況下においては、錯化剤は異なるイオンの必須濃度を減少させることによって栄養不足を引き起こし得る。死亡の様な毒性影響をもたらすには、より高い硬度の硬水においては、より高濃度のEDTAが必要となる。

異なる複数の生態毒性試験の結果によると、EDTAは主に金属イオン経路に影響を与える。EDTAについて
魚類、ミジンコ及び藻類についての長期試験がある。以下の様な結果が得られている：

Danio rerio: 35d-NOEC > 26.8 mg/L (CaNa2EDTA)
Daphnia magna: 21d-NOEC = 22 mg/L
Scenedesmus subspicatus: 72h-EC10 = > 100 mg/L

Na2EDTAについて
Daphnia magna: 21d-NOEC = 25 mg/L

水生植物に関する低EC50値は、カテゴリーメンバーの標準藻類試験の試験用培地に含まれる必須金属栄養に対する阻害効果と相関しており、阻害効果は、ラボ評価において栄養欠乏を引き起こす。これらの影響は、EDTA鉄錯体が評価される試験で見られるように、藻類培地へ成長を制限してしまう金属栄養を補充することによって解決される。自然界においては、常に実際のキレート剤濃度に対し、モルにして大過剰の必須栄養が存在する。一般的に、キレート剤は植物に有害性があると考えられない。
<table>
<thead>
<tr>
<th>被験化学品</th>
<th>CAS No.</th>
<th>LC50(mg/L)</th>
<th>NOEC(mg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>S. capricornutum</td>
<td>> 1000</td>
<td>13 280</td>
<td>> 100 72.7</td>
</tr>
<tr>
<td>fish</td>
<td>> 88</td>
<td>> 114 486</td>
<td>> 110 363</td>
</tr>
<tr>
<td>Leuciscus idus</td>
<td>> 1,000</td>
<td>> 2,155 424</td>
<td>> 1033 320</td>
</tr>
<tr>
<td>Daphnid</td>
<td>> 500</td>
<td>> 1,000 1,490</td>
<td>> 610 275</td>
</tr>
<tr>
<td>D. magna</td>
<td>> 300</td>
<td>> 1,792 1,490</td>
<td>> 456 170</td>
</tr>
<tr>
<td>Artemia salina</td>
<td>> 10</td>
<td>> 100 860</td>
<td>> 32 42</td>
</tr>
<tr>
<td>S. quadricauda</td>
<td>> 72</td>
<td>> 320 540</td>
<td>> 100 100</td>
</tr>
<tr>
<td>Daphnid</td>
<td>> 200</td>
<td>> 860 100</td>
<td>> 32 42</td>
</tr>
<tr>
<td>D. magna</td>
<td>> 50</td>
<td>> 113 230</td>
<td>> 116 50</td>
</tr>
</tbody>
</table>

一般社団法人日本化学物質安全・情報センター.
アミノカルボン酸ベースのキレート剤カテゴリーメンバーは、環境への有害性を示す特性（1 ~ 100 mg/Lで、水生生物に急性毒性）を有する。しかしながら、その毒性はカテゴリーメンバーによる必須栄養のキレート化に関係しており、栄養に富んだ環境中ではおそらく観察されない。そのカテゴリーメンバーは、易生分解性ではなく、低い生物蓄積性を持っている。

OECD共同化学品プログラムの目的のために、環境有害性を特徴付けるのに適切なスクリーニングレベルのデータが利用可能である。

ばく露：製造中のキレート剤の環境放出は偶発的である。製造は廃水流への偶発的な放出を伴う閉鎖系でなされる。同様の偶発的放出は、キレート剤を市販の水溶性混合物又は製剤中への調合と関係する。主としてキレート剤は、多様な使用の結果として、拡散によって環境に入る。実際に放出される量は用途タイプに依存するが、ほとんどの用途において、最終的な環境放出は水溶性廃棄物としての水路への流入という結果となる。

ある水溶性物質の廃水流は廃棄物処理を受けるが、ほとんどのキレート剤は、限定的な生分解を受けるのみである。したがって、キレート剤は排水処理システムを通過し水路に出る可能性がある。有力な環境コンパートメントの目的地は水圏である。塩としてのキレート剤は無視できる程度の揮発性を有するので、顕著な量が大気に放出されることはない。土壌又は生物相に放出されたキレート剤は、高い水溶性に基づき相当な土壌移動性を有し、したがって水に分配する傾向がある。

2005年米国における凝集製品及び/又は輸入量

<table>
<thead>
<tr>
<th>物質名</th>
<th>CAS No.</th>
<th>製造量(メトリックトン)</th>
<th>(NH₄)₂EDTA</th>
<th>(NH₄)₄EDTA</th>
<th>Zn(NH₄)₂EDTA</th>
<th>Fe(III)NaEDTA</th>
<th>NaEDTA</th>
<th>Na₃HEDTA</th>
<th>Fe(III)NH₄EDTA</th>
<th>Fe(II) HEDTA</th>
<th>Fe(III) HEDTA</th>
<th>PDTAH₄</th>
<th>Na₄PDTA</th>
<th>Na₅DTPA</th>
</tr>
</thead>
<tbody>
<tr>
<td>(NH₄)₂EDTA</td>
<td>20824-56-0</td>
<td>< 4540</td>
<td></td>
</tr>
<tr>
<td>(NH₄)₄EDTA</td>
<td>22473-78-5</td>
<td>< 4540</td>
<td></td>
</tr>
<tr>
<td>Zn(NH₄)₂EDTA</td>
<td>67859-51-2</td>
<td>< 4540</td>
<td></td>
</tr>
<tr>
<td>Fe(III)NaEDTA</td>
<td>15708-41-5</td>
<td>< 4540</td>
<td></td>
</tr>
<tr>
<td>NaEDTA</td>
<td>139-33-3</td>
<td></td>
</tr>
<tr>
<td>Na₃HEDTA</td>
<td>139-89-9</td>
<td></td>
</tr>
<tr>
<td>Fe(III)NH₄EDTA</td>
<td>21265-50-9</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>Fe(II) HEDTA</td>
<td>16485-47-5</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>Fe(III) HEDTA</td>
<td>17084-02-5</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>PDTAH₄</td>
<td>1939-36-2</td>
<td>< 454</td>
<td></td>
</tr>
<tr>
<td>Na₄PDTA</td>
<td>18719-03-4</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>Na₅DTPA</td>
<td>140-01-2</td>
<td>45,400</td>
<td>< 227</td>
<td></td>
</tr>
</tbody>
</table>
一般社団法人 日本化学物質安全・情報センター

キレート剤は食品の防腐剤又は栄養強化剤（例えば、個体群の中において鉄の状況を改善するため）として機能する。キレート製剤の調合は重金属中毒（例えば、鉛）の処置において臨床的にも投与される。

著作権および免責事項について

著作権

本資料の著作権は弊センターに帰属します。引用、転載、要約、複写（電子媒体への複写を含む）は著作権の侵害となりますので御注意下さい。

免責事項

本資料に掲載されている情報については、万全を期しておりますが、利用者が本情報を用いて行う一切の行為について、弊センターは何ら責任を負うものではありません。また、いかなる場合でも弊センターは、利用者が本情報を利用して被った被害、損失について、何ら責任を負いません。