物質名: メチルtert-ブチルエーテル (MTBE)
分子式: C_5H_{12}O
CAS No: 1634-04-4
勧告: 本物質は追加研究の候補物質である。

SIAP結論の要旨

ヒトの健康
MTBEは高い蒸気圧を持つ液体であるので、ほとんどの曝露は吸入により生じる。本物質はよく吸収され、迅速に代謝されてホルムアルデヒド及び3級ブタノールになる。

t-ブタノールは更に代謝され、低率で2-メチル-1,2-プロパンジオール及びα-ヒドロキシイソ酪酸になり、後者は主要代謝物である。ラットはヒトよりも効率的にMTBEを代謝するようだが、代謝物のプロファイルはおなじである。

MTBEは哺乳類において、経口、皮膚、並びに吸入経路により低い急性毒性を表す。ラットにおいて、平均経口LD_50は4000 mg/kgである。皮膚のLD_50は10000 mg/kg以上であり、吸入によるLC_50は約100mg/Lである。

MTBEは皮膚刺激物質と考えられるが、眼刺激物質でもなく、呼吸器刺激物質でもない。

MTBEはモルモットにおいて感作性がなく、ヒトの感作性に関する入手できる報告はない。反復投与毒性試験において、主に、3000 ppm以上の吸入濃度、または250 mg/kgかそれ以上の経口用量で、主要な影響される器官は肝臓及び腎臓である。

MTBEは細管細胞におけるα2u-グロブリンの雄ラットに特異的な蓄積に恐らく関係している蛋白質飛沫腎臓病を発生させた。

MTBEはラット及びマウスにおいて肝臓重量を増加し、肝細胞肥大を誘発した。雌マウスにおいて、MTBEは肝臓毒性なしに様々なミクロソームP450活性を誘発し、維持された病巣でない肝細胞DNA合成の増加を誘発した。全体として、300mg/kgの経口NOAEL、並びに800 ppmの呼吸器NOAELが導かれた。

MTBEはin vitro及びin vivoの両方の様々な試験系で遺伝毒性を広範囲に試験されている。結果は全て一致して陰性というわけではないが、証拠の重要性は本物質が遺伝毒性物質でないと結論している。

腎小管細胞がん腫及び腺腫発生率の軽度な増加がMTBEの3000 ppmで雄のFisher-344ラットで見られた。これらの新生物はα-グロブリン腎臓病の細胞毒性及び増殖反応と関係があると仮定することは合理的である。腫瘍の発生率は400 ppmでは見られなかった。雌のCD-1マウスにおいて、MTBEの8000 ppmは肝細胞肥大を誘発し、肝臓腺腫の発生率増加を誘発した。その機構は同定できていないが、高用量レベルで、MTBEは明らかにマウスの子宮に抗発情影響があった。

MTBEはN-ニトロソジエチルアミン(DEN)イニシエーション後の雌マウスにおいて試験されたとき、プロモーター活性を示さなかった。マウス肝臓腫
瘍プロモーションにおけるMTBEの最後の役割は現在の所、正確な機構に関して明白でないが、エストロゲン拮抗作用が関係あるかもしれない。

MTBEの高レベル(吸入により3000 ppm以上、経口により1000mg/kg/日)はFisher-344及びSprague-Dawleyラットにおいて睾丸間質性(ライジッヒ)細胞腺腫を誘発した。

Fisher-344において、明白な用量-反応相関関係があったが、腫瘍発生率は実験室の病歴対照値以内であった。高用量のMTBEは恐らく、強化された代謝の結果生じたと思われるSprague-Dawleyラットにおける血清テストステロンを減少し、T及プロラクチンにおいて軽度の撹乱もあったが、視床下部-下垂体-睾丸軸の刺激は検出されなかった。そのため、作用モードが現在の所、明白でないので、確定的な結論はヒトに対するこの腫瘍の関連性に関して、引き出すことは出来なかった。同様に、250及び1000mg/kgのMTBEで経口投与された雌のSprague-Dawleyラットで(特に肺において)検出されたリンパ芽球リンパ腫の増加機構は知られていない。

ホルムアルデヒドはよく知られた変異原物質であるが、迅速に排出されるが、MTBE代謝において内的反応性を表すと推定されない。それに対して、3級ブチルアルコールはMTBEの最初の代謝物であるが、雌マウスにおいて甲状腺腺腫及び雄ラットにおいて腎臓腫瘍を引き起こした。

要約すると、MTBEは高用量レベルで動物発がん性モデルにおける後成的プロモーターとして機能すると思われる。ヒトにおける見解の関連性が欠けているか、または限定されていて、低い潜在性が動物試験で論証されている点から考えて、ヒトのがん危険性は低いと推定される。

MTBEはラットにおける1-及び2-世代試験における繁殖性影響、並びにラット、マウス、及びウサギにおける発達毒性について試験された。注目すべき生殖毒性または特異的な発達毒性は検出されなかった。

MTBEは土壌に吸収されないし、水と共に浸出することが地表面下における優先的な非生物運命過程である。好気性及び特に嫌気性条件において、土壌中のMTBEの生分解は遅い。MTBEは標準試験に従って、水生環境において容易に生分解しない。ある特別な型の接種物、純粋培養、並びに混合培養は、しかしながら、MTBEを分解可能である。大気中のMTBE分解半減期は約3-6日である。

MTBEは生物濃縮しない（BCF1.5）。MTBEは急性試験において、水生生物に低い毒性を示す。海の無脊椎動物は136-306mg/Lの範囲のEC50値で最も感受性のある生物と思われる。淡水の無脊椎動物に対する急性毒性値は340-960mg/Lの範囲である。ミジンコの長期NOECは51mg/Lであり、海水の無脊椎動物であるMysidopsis bahiaは26mg/Lである。魚に対する急性毒性は574-1358mg/Lと変化する。淡水魚に対する慢性IC20は279mg/Lである。淡水藻類に対する急性毒性は184から800mg/Lより大きく、IC20値は103mg/Lである。水生生物に対するPNECは2.6mg/Lである。

沈殿物に生息するか、または陸生生物の生態毒性データはない。平衡分配法を用いて計算したPNECは、沈殿物生物について2.05mg/kgwwtのPNEC、並びに陸生生物について0.73mg/kgwwtのPNECの結果が得られた。

ガソリンにおけるMTBEの使用はいくつかの欧州連合メンバー国において、地下水中のMTBEの増加検出結果が得られた。これは地下貯蔵タンクからの漏洩、並びにいっぱいにし過ぎたタンクからの流出により主に引き起こされる。地下水中のMTBEは欧州連合国において定期的にモニターされていないが、そのため、
一般社団法人
日本化学物質安全・情報センター

EUレベルで現在の範囲の問題についてしっかりとした結論を引き出すことは困難である。メンバー国から入手できるデータは膨大の汚染事例があり、これらの事例の発生率における変化性が考慮に入るべきであることを論証している。

地下水汚染に関連して、生態毒性学的及び毒性学的観点に加えて、地下水の全体的な質を考慮する事はもっともである。

MTBEの臭気及び味の閾値が低いことは地下水汚染の役に立つ初期警告指標と見られるかもしれないが、水資源は実際問題として、臭気及び味の閾値レベルが超過している場合には汚染されていて、使用に適さない。

EU内の多くの事例において、臭気及び味の閾値を明白に超えている濃度でMTBEは地下水中に検出される。

ばく露MTBEの推定使用量はEUにおいて1999年に330万トンであり、地球全体としては2000万トンより多かった。MTBEは主に石油添加物として用いられる（約99%）。本物質は製薬工業及び実験作業におけるイソブチレン生産に用いられ、抽出溶媒として用いられる。作業者はガソリンの生産及び再処方中、並びに配給中にばく露される。他の関係するばく露は維持作業、ガソリンスタンド、並びに自動車修理である。消費者は潜在的にガソリンスタンド及び燃料補給中にばく露する。環境からの間接的ばく露は飲料水及び大気（排気ガス、漏出、並びに蒸発）から発生するかもしれない。

EUにおける生産、処方、並びに加工場所からの放出に関して広範囲の測定されたデータが入手できる。

勧告された追加研究の特徴SIDS要求が満たされている。本物質は規制EEC/793/93に基づいて欧州連合リスクアセスメント計画において議論されている。リスクを制限する必要性があると結論している：

- 作業者に対して、維持作業及び自動車修理から生じるばく露の結果として、反復用量局所皮膚影響の関連性のため;
- 水生生態系に対して、最終場所の貯蔵タンクの底にある水から地表水への放出により生じるばく露のため;
- 地下水及び飲料水の美的な質に対して、地下貯蔵タンクの漏出、及びいっぱいに入った貯蔵タンクからの漏洩から生じるばく露のため;

他のメンバー国はそのため、同様な方法の必要性を調べるために彼らの国におけるばく露状態を再調査することをSIDS後の活動として勧告される。

米国は自動車燃料におけるこの物質の使用禁止を考慮している。

[著作権および免責事項について]

[著作権]
本資料の著作権は弊センターに帰属します。引用、転載、要約、複写（電子媒体への複写を含む）は著作権の侵害となりますので御注意下さい。

[免責事項]
本資料に掲載されている情報については、万全を期しておりますが、利用者が本情報を用いて行う一切の行為について、弊センターは何ら責任を負うものではありません。また、いかなる場合でも弊センターは、利用者が本情報を利用して被った被害、損失について、何ら責任を負いません。