一般社団法人
日本化学物質安全・情報センター

SIDS in HPV programme & CCAP
SIAM 12, 27/06/2001

初期評価プロファイル（SIAP）

リン酸トリブチル

物質名：Tributyl phosphate

構造式：C12H27O4P

CAS No.：126-73-8

勧告：本物質は以下に明記した条件の下で今後の作業の候補である。

SIARの結論の概要

ヒトの健康

リン酸トリブチル（TBP）の毒性学データベースは大きく、充分に記録されている。本物質のヒトの健康影響を評価するために充分なデータが存在する。

げっ歯類の急性毒性値はラットの1,390〜3,350mg/kg bwからマウスの400〜1,240mg/kg bwの範囲である。ラットの6時間LC50は>4.2mg/L（試験された最高用量）と報告された。皮膚試験はウサギ（LD50>3,100mg/kg bw, >10,000mg/kg bw）とモルモット（LD509,700〜19,400mg/kg bw）に存在する。

動物での反復投与試験は吸入経路（ラットとウサギの4ヶ月間試験）と経口（ラット〔1週間〜18週間〕とウサギ〔2週間〕の強制経口投与、ラット〔9週間〜2年間〕とマウス〔4週間〜2年間〕の混餌試験）で実施された。

吸入試験で認められた影響は、試験された最高用量（13.6mg/m3）におけるラットならびにウサギのコリンエステラーゼ値の低下であった（ばく露中止後に回復）。全体としてげっ歯類の混餌/強制経口投与試験では肝臓、腎臓、膀胱の細胞および/または重量の変化が一貫して見られた。

ラットでは2年間混餌試験における膀胱の細胞毒性/過形成のNOAELが200ppm（雄では9mg/kg bw/日、雌では12mg/kg bw/日）である。CD-1マウスを使用した18ヶ月間混餌試験で、NOAELは150ppm（雌で28.9mg/kg/日、雄で24.1mg/kg/日）であり、これは試験された最低用量であった。

TBPはラットの二世代混餌試験で生殖成績に影響を及ぼさなかった（NOAEL>225mg/kg bw/日）。この二世代試験で発生毒性が認められたが、母体毒性が認められる用量に限定されていた（NOAEL<15mg/kg bw/日、仔動物の体重減少とともに母動物の体重増加率の低下と摂餌量の減少）。

3件の独立した催奇形性試験（2件はラット、1件はウサギ）で、催奇形性（骨形成の遅延と痕跡肋骨）と発生影響（胎仔体重の減少）が母体毒性量のみで、またラットのみに認められた（ウサギの試験のNOAELは試験された最高用量の400mg/kg bw/日）。催奇形性のNOAELは750mg/kg bw/日であったが、母体毒性のNOAELは62.5mg/kg bw/日であった。

餌に混和して投与したとき、ラットでは200ppm（9mg/kg bw/日）またはマウスでは150ppm（24mg/kg bw/日）を越える濃度で、TBPは動物発がん性物質である。全体として遺伝子毒性試験の結果は、TBPが遺伝子毒性を持たないことを示す。これにはin vitroとin vivoのデータが含まれる。

ラットを使用したメカニズム研究から、TBPが膀胱に及ぼす影響は投与中止により回復し、したがって物質自体（またはその代謝産物）の直接的な尿路上皮細胞毒性のためであるらしく、尿の変化の結果ではないことが明らかにされた。

TBPの神経毒性はラット、メンドリ、ウサギを含む数種類の動物で試験された。
これらの試験では、TBPは神経毒性の徴候を生じないかまたは測定したエンドポイントに対して軽微なもしよくは一過性の影響を及ぼしたにすぎなかった。TBPはヒトと実験動物の眼と皮膚に対して刺激性を持つが、ヒトに感作を引き起こさない。TBPへの主なばく露は職場での皮膚接触による。このばく露経路と報告されたNOAELの値に基づくと、TBPばく露の最も可能性の高い影響は皮膚と眼の刺激である。

環境土壌中と水中の双方でTBPは底質または粒子状物質に吸着され、生分解すると思われる。大気中ではTBPは蒸気として存在し、速やかに光分解されるだろう。生物濃縮は起こらないと思われる。魚類、無脊椎動物、藻類に関する多数の急性および慢性毒性データが入手できた。

12を超える研究から得た魚類の急性毒性値(96時間LC50)は4.2〜18mg/Lである。

6種類の藻類の毒性値は72時間EC50(50%影響濃度)(バイオマス)1.1mg/L(イカダモScenedesmus subspicatus)から48時間EC50 5〜10mg/L(クロレラエマゾーニChlorella emersonii)までの範囲である。藻類のNOECは2つの研究で報告されている(イカダモのバイオマスEC10 0.37mg/Lと、Selenastrum capricornatumの96時間試験の2.2mg/L)。

ミジンコの慢性NOECは0.87mg/L(21日間試験)から3.1mg/L(14日間試験)までの範囲である。魚類の最小のNOECは0.82mg/L(95日間初期生活段階試験)の濃度であった。

3つの栄養段階を代表する3種類の生物(魚類、ミジンコ、藻類)の長期NOECが入手できたので評価係数10を使用し、妥当な最低のNOEC(藻類の0.37mg/L)から、水生生物のPNECは0.037mg/Lとなる。

ばく露TBPの生産量は世界で3,000〜5,000トンと推定される。産業におけるTBPの主な用途は航空機の圧媒液と稀土類の抽出および精製のための溶剤である。少量の用途としては油田用のセメントケーシングの脱泡剤、塗装および床仕上げ剤の空気混入防止剤、ならびに蛍光染料のキャリヤーがある。

TBPの主なこれらの用途は生産量の80%以上を占める。現在TBPを使用した消費者製品は確認されていない。

TBPへのばく露の可能性はメンテナンス作業の種類によって異なるが、ほとんど必ず皮膚経路を通じて起こる。

勧告される今後の作業の性質本物質が除草剤として使用されるならば、または他の散布用途に使用されるならば、リスクアセスメントにおける今後の作業の候補であると考えられる。