一般社団法人
日本化学物質安全・情報センター

SIDS in HPV programme & CCAP
SIAM 22, 18/04/2006

初期評価プロファイル（SIAP）

1-クロロ-2,3-エポキシプロパン

物質名: 1-Chloro-2,3-epoxypropane
CAS No.: 106-89-8

SIARの結論の要旨

ヒトの健康

哺乳類において、1-クロロ-2,3-エポキシプロパン（エピクロロヒドリン）は経口ばく露、あるいは吸入ばく露の後、迅速に吸収され、代謝された。エピクロロヒドリンの2つの主要な代謝経路は、尿中に排泄されるメルカプト酸抱合体への代謝へと続くグルタチオン（GSH）との抱合、そして、α-クロロヒドリンへのエピクロロヒドリンの加水分解であり、この経路は更に代謝され、CO2として呼気排出されたか、メルカプツール酸抱合体として尿中に排泄された。多くの研究（経口および吸入）では、約25から42%がCO2として呼気排出され、大体50%が尿を経由して排出された。

ラットにおけるエピクロロヒドリンの急性経口LD50値は、175 mg/kg（雌）および282 mg/kg（雄）、およびウサギへの一回閉塞塗布後の経皮LD50は515 mg/kgであった。ラットへの1時間ばく露に対する急性吸入LC50は、雄については3617 ppm（13,746 mg/m3）、雌については2165 ppm（8227 mg/m3）であった（マウスの値も同様であった）。雄ラットの6時間ばく露に対するLC50は360 ppm（1361 mg/m3）であった。

一次刺激性試験では、エピクロロヒドリンは皮膚および眼に対して腐食性であった。エピクロロヒドリンの蒸気は1790 ppm以上で同様にラットの角膜に損傷を生じた。動物試験に基づき、エピクロロヒドリンは皮膚感作性物質であると考えられた。ヒトにおいては、エピクロロヒドリンは強い刺激性物質であり、皮膚感作性物質であることが示された。

亜慢性反復投与毒性試験は、エピクロロヒドリンの経口および吸入ばく露は接触部位に局所毒性（刺激性）の原因になることを示した。全身毒性の症状は、主に、体重の変化および食餌量の変化であった。接触部位を除く、臓器特異的毒性は、90日以上の試験については僅かであった、すなわち僅かな組織病理学的影響を伴う腎臓重量の増加が吸入ばく露濃度25 ppmおよび50 ppm（それぞれ95および190 mg/m3）で認められた。

エピクロロヒドリン蒸気の90日間ばく露後のラットとマウスのNOAELは、5 ppm（18.9 mg/m3）であった。

90日間ばく露後の経口（強制胃管）投与に対するNOAELは1 mg/kg bw/日であった（高用量における赤血球パラメーターの低下と臓器重量の変化に基づく）。反復投与毒性試験の全てにおいて、しばしば重篤な局所刺激を伴うエピクロロヒドリンの刺激性を確認しており、これは約1 mg/kg bw超の投与量での反復強制胃管ばく露の後および吸入ばく露では約5 ppm（18.9 mg/m3）超の濃度での吸入ばく露後に接触部位で生じている。
一般社団法人
日本化学物質安全・情報センター

エピクロロヒドリンは
in vitro
および
in vivo
の何れの試験でも一貫して遺伝子毒性であった。

ラット鼻上皮の扁平上皮細胞がんが、最高濃度
30 ppm
(113 mg/m3)
のエピクロロヒドリンの吸入ばく露
後に観察された。非腺胃(前胃)の扁平上皮細胞の乳頭腫およびがんが、ラットにおいてエピクロロヒドリンを最高濃度
10 mg/kg bw-day
で強制胃管投与した後および、
375 mg/L
(約
18 mg/kg bw/
日)
以上の飲水投与した後に観察された。これらの所見に基づき、エピクロロヒドリンは実験動物において発がん性であると考えられる。ヒトにおける発がん影響は、エピクロロヒドリンの製造や取り扱い労働者の疫学研究においてはまだ立証されていない。

1件の吸入ばく露による生殖能力試験において、雄のラットとウサギを
5
、
25
、
50 ppm
(それぞれ
18.9
、
95
、
190 mg/m3
)
にばく露し、非ばく露の雌と交配した。雄ラットの生殖不能が
50 ppm
で観察され、着床前消失が
25
、
50 ppm
で観察された。再吸収率は
50 ppm
で顕著に増加した。これらの影響は、ばく露
2
週間後には元に戻った。ウサギにおいては、精子の数、運動性、生存能、受胎能に影響がなかっただけでなく、処理した雄と交配した非処理の雌に黄体数や再吸収数への影響も認められなかった。強制胃管投与試験において、雄ラットを
12.5
、
25
、
50 mg/kg bw/
日
で処置し、非処理の雌と交配した。受胎能は
50 mg/kg bw/
日
のみにとられ、完全に障害を受けていた。精子の運動性に関連するいくつかのパラメーターは全ての用量で、用量相関的に影響を受けていた。

20 mg/kg bw/
日
以上、1日以上ばく露の他の経口投与試験も、雄の受胎不能および精子への影響を生じる結果となった;ばく露終了
10
週間から
12
週間後に2つの試験は保留精子あるいは異常精子を生じたが、これらの試験の内の一つでは受胎能への影響は回復した。雌における生殖能は、吸入ばく露、経口投与試験において影響を受けなかった。ヒトにおける生殖影響については、エピクロロヒドリンの製造や取り扱い労働者の疫学研究においてはまだ立証されていない。

発生毒性試験は、吸入ばく露によりラットおよびウサギにおいて用量
2.5
、
25 ppm
(9.5
、
95 mg/m3)
で、また強制胃管投与によりラットにおいて
40
、
80
、
160 mg/kg bw/
日
、マウスにおいて
80
、
120
、
160 mg/kg bw/
日の用量で実施された。マウスへの強制胃管投与試験で、エピクロロヒドリンはマウスの胎仔の体重減少の結果をもたらした(
120 mg/kg bw/
日で対照に比して
7%
、
160 mg/kg bw/
日で対照に比して
9%
)。しかし、これら試験では胎仔毒性の他の徴候は観察されなかった。

エピクロロヒドリンは融点が
-57
℃の液体であり、沸点が
116.4
℃である。密度が
1.181 g/cm3
(20
℃)
にある。エピクロロヒドリンの蒸気圧が
22.7 hPa
であり、一方、水溶解度が
66000 mg/L
(25
℃)である。測定値
logKow
が
0.45
であった。

エピクロロヒドリンの大気中における間接的光酸化の半減期は
24
日である。レベルⅢのフガシティーモデルに基づき、大気中に放出される場合、エピクロロヒドリンは主に大気中に止まり、いくぶんかは水および土壌に移動するだろう。水中に放出される場合、エピクロロヒドリンは水中に溶けて残るだろう。土壌に放出される場合、エピクロロヒドリンは主に土壌の間隙水(地下水)中に溶け込むだろう。大気、水、土壌への同時放出は、結果として水と土壌区分に分配されることが予想される。加水分解試験(OECD TG 111)は、水中での半減期(20℃)が、pH4で7.3日、pH7で3.9日、pH9で6.8日であることを明らかにしており、エピクロロヒドリンは水環境中で加水分解することを示唆した。エピクロロヒドリンの加水分解は1-クロロ-2,3-
ジヒドロキシプロパンを生成する。エピクロロヒドリンは順化した活性汚泥を用いた生分解性試験で、2日間で75%が分解された。この試験に基づき、エピクロロヒドリンは生分解性であると考え得る。

LogKowが0.45と低いことに基づき、生物濃縮性は限定的であると予測される。

ファットヘッドミノーの稚魚による、魚類急性毒性試験はLC50(96時間)が10.6 mg/L(設定濃度)であることを明らかにした。ミジンコ(Daphnia magna)による急性毒性試験は、EC50(48時間)が23.9 mg/L(設定濃度)であった。

OECDガイドラインに沿った藻類(Pseudokirchneriella ubcapitata)による試験で、バイオマスおよび平均測定濃度に基づくEC50(72時間)が7.1 mg/L、NOEC値が1.7 mg/Lとなった。成長速度にもとづくEC50(72時間)は15 mg/Lであった。

ばく露エピクロロヒドリンの世界の年間製造量は約百万トン/年と推定されている。米国における2002年の推定製造量は480000メートルトンであった。米国の全企業から環境へのエピクロロヒドリンの放出量は、約100000kg/年(~100メートルトン/年)と報告されており、そのうちのほとんどは大気中に放出されている。

欧州における推定生産量は2002年に317000トンである。日本の太平洋側で推定製造量は2002年に365000トンであった。

エピクロロヒドリンは、化学品中間体(工業用途)としてのみ使われる。閉鎖系内で使われ、エピクロロヒドリンの世界の消費の約75%がエポキシ樹脂製造のために、9%が合成グリセリン製造のために使われ、残りは、エラストマー、耐湿樹脂製造のためのポリアミド-エピクロロヒドリン樹脂、グリシジルエーテル、グリシジルメタクリラート、界面活性剤、イオン交換樹脂、ポリアミド水処理剤、難燃剤および四級アミン類のような様々な製品の製造に使われる。職業的場面において、閉鎖系工程はエピクロロヒドリンの安全な取り扱いを可能にし、個人保護具の使用が常に勧告されている。

エピクロロヒドリンは、消費者製品に直接添加されないことから、ポリマーや他の化学合成の中間体としての反応性および使用に基づいて、消費者製品は微量のエピクロロヒドリンしか含まないと予期される。

WHO(世界保健機構)は暫定的な飲料水基準0.4μg/L(2004)を導出した。しかし、担当国における予防的健康の見地から、ばく露は合理的に達成でき得る低さ(ALARA)の原則に従い、望ましくはゼロにすべきである。

勧告、および勧告と追加の推奨作業の種類に対する理論的根拠ヒトの健康この化学物質は追加作業の優先性は低い。この化学物質はヒトの健康に有害性を示す特性を有している(皮膚、眼、および気道の刺激性、皮膚感作性、遺伝子毒性、発がん性、生殖影響)。担当国により提供されたデータ(世界的生産量の42%を占める米国の数社による製造に関連して、および米国内での主な用途の種類に関連して)に基づけば、リスク管理措置(工学的管理、作業基準、飲料水基準、MSDS、他の米国の規制)が講じられている。各国は、追加措置の必要性があるかどうかを見いだすために措置を点検することがかもしれない。
環境

本化学物質は環境に有害性を示す特性を有する（急性水生EC/LC50値が1と100 mg/Lの間）。しかしながら、本化学物質は、さらなる環境に対する追加作業の影響を調べる追加試験の優先度は低い。その理由は、その用途が閉鎖系における化学中間体であることから、環境ばく露が限定的であることが予期されるからである。

[著作権および免責事項について]

[著作権]
本資料の著作権は弊センターに帰属します。引用、転載、要約、複写（電子媒体への複写を含む）は著作権の侵害となりますので御注意下さい。

[免責事項]
本資料に掲載されている情報については、万全を期しておりますが、利用者が本情報を用いて行う一切の行為について、弊センターは何ら責任を負うものではありません。また、いかなる場合でも弊センターは、利用者が本情報を利用して被った被害、損失について、何ら責任を負いません。