一般的社団法人
日本化学物質安全・情報センター

SIDS in HPV programme & CCAP
SIAM 21, 18/10/2005

初期評価プロファイル（SIAP）

物質名：p-トルイジン
構造式：

CAS No.：106-49-0

SIAR
結論の要旨

ヒトの健康
p-トルイジンの生殖影響、または発生毒性を評価する特定の試験は入手できない。m-トルイジンから得られる情報がデータのギャップを埋めるために用いられる。そのため、SIARにはあらゆる毒性指標について、p-トルイジン及びm-トルイジンの簡潔な比較が含まれている。異性体のm-トルイジンはSIAM 11(2001)で既に議論され、結論された；そのデータはUNEPから出版（2003）されている。

m-トルイジンの本質的な毒性学的特性とp-トルイジンのこれらの特性との比較は、m-トルイジンがp-異性体よりもメトヘモグロビン形成においてより強く示した。妊娠ラットにおけるメトヘモグロビン血症が発生毒性と因果関係があることを考慮すると、m-トルイジンの結果のp-トルイジンへの外挿はp-トルイジンの発生毒性の過大評価を導く傾向を暗示するだろうと推定できる。更に、構造的に関連があるp-イソプロピルアニリンの発生毒性データが評価に含められた。これは両物質の構造的類似性のために正しいと思われる、即ち両方のアニリン誘導体がパラ位で置換基を持ち、それぞれの分子の反応性においてほぼ同じような影響を呈すると考えられるからである。これは反復毒性データと同様に急性毒性データと共に論証された。

物質すべてについて、メトヘモグロビン血症及び/または赤血球毒性は全身毒性に最も関連のある機序であると思われる。更に、変異原性に関して、これらの物質に関するそれぞれの試験結果の比較は不一致を呈しているが、芳香族アミン類ではよくあることである。

p-トルイジンは胃腸管から吸収され、分布し、代謝され、尿及び糞便中に排泄される。2-アミノ-5-メチルフェノールの同定は、ラットにおける代謝が環のヒドロキシル化とそれに続く抱合化を通じて進行することを示唆する。皮膚及び気道からの吸収に関する毒性トキシコキネティクスデータはない；p-トルイジンの分子の大きさから、これらの投与経路からの吸収は合理的に予想できる。

m-トルイジン（SIAM 11）は胃腸管及び皮膚から迅速に吸収され、環のヒドロキシル化により代謝される。2-アミノ-4-メチルフェノール及び4-アミノ-2-メチルフェノールが少量の親化合物と共にラットの尿中に同定されたが、m-トルイジンの定量的代謝、またはトキシコキネティクスに関する十分な情報はない。

総合的結論：両異性体、p-及びm-トルイジンは胃腸管及び皮膚から吸収され、分布する。それらは環のヒドロキシル化とそれに続く抱合化により代謝され、尿及び糞便中に排泄される。

p-トルイジンについて、LC50（吸入、ラット）は>0.64 mg/Lであり、LD50（経皮、ウサギ）は890 mg/kg bwである。LD50（経口、ラット）は656 mg/kg bw及び620 mg/kg bwと測定された。毒性影響の兆候は活動
低下、筋肉の弱化、痙攣、チアノーゼ、麻酔が含まれる。
p-トルイジンはラットにおけるメトヘモグロビン形成化学物質である。ラットへの経口投与後21.7%、並びにラットへの皮膚投与後40%までのレベルが測定された。
p-トルイジンは、アニリンと同様の毒性影響を生じ、22 mg/m3以上でヒトにおけるメトヘモグロビンを形成する化学物質である;チアノーゼをほとんど伴わず、有痛性排尿困難及びヘモグロビン尿症をより多く伴う。
m-トルイジンは、ラット、経口ばく露LD50値は450から1430 mg/kg bwで、ウサギへの経皮によるLD50は3250 mg/kg bw(試験の質に関する情報は入試できない)である。重度のメトヘモグロビン形成がm-トルイジンへの一回の経口投与後のラットの最高36.4%及び皮膚投与後のラットの最高40%(m-及びp-トルイジンのメトヘモグロビン形成を平行して試験した試験から、p-トルイジンについても上記と同様なデータが得られている)、ネコの(静脈内注射)最高60.2%について報告されている。
p-イソプロピルアニリンに対して、985 mg/kg bw及び757 mg/kg bwのLD50値が一回の経口投与後のラットで報告された。ネコへの25 mg/kg bwの一回の経口投与後、メトヘモグロビンレベルの上昇及びハインツ小体の増加が結果として生じた。
総合的結論：入手可能なデータに基づくと、p-及びm-トルイジンは中程度の急性毒性がある。主な毒性影響はヒトと同様にラットにおいてメトヘモグロビンの形成を結果として生じる。m-トルイジンは等しい用量及び同様の実験条件で試験すると、p-トルイジンよりもメトヘモグロビン形成において、かなり活性がある。p-イソプロピルアニリンについては、985 mg/kg bw及び757 mg/kg bwのLD50値が一回の経口投与後のラットで報告された。ネコへの25 mg/kg bwの一回の経口投与後、メトヘモグロビンレベルの上昇及びハインツ小体の増加が結果として生じた。
総合的結論：入手可能なデータに基づくと、p-及びm-トルイジンは中程度の急性毒性がある。主な毒性影響はヒトと同様にラットにおいてメトヘモグロビンの形成を結果として生じる。m-トルイジンは等しい用量及び同様の実験条件で試験すると、p-トルイジンよりもメトヘモグロビン形成において、かなり活性がある。p-イソプロピルアニリンについては、985 mg/kg bw及び757 mg/kg bwのLD50値が一回の経口投与後のラットで報告された。ネコへの25 mg/kg bwの一回の経口投与後、メトヘモグロビンレベルの上昇及びハインツ小体の増加が結果として生じた。
一般社団法人
日本化学物質安全・情報センター

総合的結論:
反復投与で、トルイジン両異性体はp-イソプロピルアニリンと同様に赤血球(メトヘモグロビン形成)及び肝臓(肝臓重量の増加)とp-トルイジン及びm-トルイジン及びp-トルイジンが主な標的であった。物質すべてについてNOELsが大雑把に同じ用量範囲にあり;3物質すべての主な毒性の本質は症状を伴うメトヘモグロビン形成である。p-トルイジンはin vitro Ames試験のほとんどにおいて点突然変異を引き起こさない。チャイニーズハムスター肺細胞において、p-トルイジンはS9-mixが存在すると染色体異常を誘発するが、S9-mixが無いと染色体異常を誘発しない。in vivoで、それぞれのLD50(35 mg/kg bw)の2/3用量を1回腹腔内注射後にアルカリ溶出技術を用いて、マウスの肝臓及び腎臓でDNA一重らせん切断が検出される。そのために、その影響が細胞毒性または本当の遺伝毒性機序により発生するのかどうかが断定できない。全体のところ、in vitroの染色体異常誘発活性のいくつかの兆候があり、in vivoでこのような作用のいくつかの未解決の疑いがある。

ラット及びマウスにおける発がん性を評価するためのp-トルイジンの適切な試験はない。制限のある試験であるが、証拠の重さアプローチを支持するのに十分に多くの数の試験がある。制限には例えば、経皮試験で用量が1つだけしかない、動物数が少ない、ばく露時間が短すぎる、並びに報告が要約しかない。ラットの経口及経皮(1用量だけ)投与後に、どの投与レベルでも腫瘍は同定されない。マウスにおいて、肝臓がんが全用量群の雄で認められ、一方、雌は高用量群でだけ肝臓腫瘍を示した。

p-トルイジンの生殖毒性に関するデータはない。反復投与毒性試験からのデータはp-トルイジンの生殖器管に対する影響についての証拠を何も示さない。p-トルイジンの発生毒性試験は入手できない。ラットに対するm-トルイジンのOECD TG 422試験において、メトヘモグロビン形成を導く親への全身毒性用量のばく露により、発生に対する有害影響と、生殖機能の障害の誘発の可能性が示された。m-トルイジンのラット生殖毒性のNOELは30 mg/kg bw/日である。この用量で、脾臓における髄外造血及び色素沈着により示唆されるようなある程度の溶血性貧血が既に存在する。ラットにおけるm-トルイジンの発生毒性のNOELは100 mg/kg bw/日であると考えられる。

p-イソプロピルアニリンのラットにおけるOECD TG 422ガイドライン試験において、メトヘモグロビン血症の兆候が既に20 mg/kg bw/日で検出されるが、最高試験用量(60 mg/kg bw/日)までに生殖能の障害はない。p-イソプロピルアニリンのラットにおける発生毒性のNOELは20 mg/kg bw/日であると考えられる。
一般社団法人
日本化学物質安全・情報センター

p-トルイジンより
m-トルイジンはメトヘモグロビン形成能がより強いという事実と、また妊娠ラットにおけるメトヘモグロビン血症が因果的関連を発生毒性に有するかもしれないことを考慮すると、m-トルイジンの結果のp-トルイジンへの外挿はp-トルイジンの発生毒性を過大評価に導く傾向を意味するだろうと推定できる。

m-トルイジンまたはp-トルイジンの生殖または発生有害影響に関する、直接の作用機序を通しての証拠はないので、p-トルイジンの追加試験は必要とみなされない。

環境
p-トルイジンの形状は光沢のある板状あるいは薄片状で、融点は44℃、並びに沸点は200.5℃である。密度は0.9619g/cm³(20℃)であり、推定蒸気圧は38.1Pa(25℃)である。測定されたlogKowは1.39である。水溶解度は25℃で7.4g/Lである。引火点は87℃で、自然発火温度は482℃である。

大気中で、p-トルイジンは光化学的に生産されるヒドロキシラジカルにより分解される。半減期は約2.9時間と推定される。化学構造に関して、p-トルイジンは加水分解される基が無いため、加水分解は予測されない。

p-トルイジンは本質的に生分解性である(MITI試験OECD TG 301C:14日で>30%;OECD TG 302B:8日で94%(工業用汚泥)、OECD TG 302B:10及び13日で94%、OECD TG 302B:5日で97.7%(順化汚泥)、OECD TG 301Dに類似した試験:20日で生分解68% (記述が不十分な研究) )。

MackayフガシティーモデルレベルⅠに従うと、p-トルイジンの主要な標的区分は水系で83.7%、次いで大気で16.0%である。実験的に決定されたヘンリー定数(25℃で0.20Pa m³/mol)は地表水からの揮発性が低から中程度であることを実証している。

魚について記録が不十分な研究において、生物濃縮係数は、<1.3(100μg/L)、及び<13(10μg/L)が得られた。

p-トルイジンの生物濃縮係数BCF=2.35はオクタノール-水分配係数から算出されたが、魚におけるp-トルイジンの生物蓄積性が低いことを指摘している。

Mytilus edulisにおけるp-トルイジンの摂取及び排出に関する入手可能な実験データはイガイ類における生物蓄積潜在性が低いことを示しており、4時間後の定常状態の体内負荷量の85%が排出された。

吸着係数(Koc)の実験値は、p-トルイジンの低から高吸着性を示した。実験的に得られたKoc値は土壌の質に依存して102.2から1903.4の範囲であった。更に、Koc値はPCKOCWIN v. 1.66(Koc=72.5)及びアニリンのTGD公式(Koc=52)により算出された。これらの結果はp-トルイジンの土壌または底質有機相への吸着性は低いことを示唆している。低いpHでは、p-トルイジンのプロトン化した型はその静電気力も合わせて、土壌吸着過程に重要な役割を果たすことが推定できる。

水生種に対するp-トルイジンの毒性に関して、魚、ミジンコ並びに藻類の信頼できる実験結果が入手できる。試験は標準手法または同様の方法に従って実施された。長期魚毒性試験および短期試験から得られた最低影響値は次のようである:

Danio rerio:96時間LC50=115 mg/L(m)
Poecilia reticulata:14日間LC50=10.7 mg/L(n)
Daphnia magna:48時間EC50=0.12 mg/L(m)
Scenedesmus obliquus:48時間ErC50=62.9 mg/L(n)
Scenedesmus quadricauda:96時間EbC3=8.0 mg/L(n)
一般社団法人
日本化学物質安全・情報センター

m-トルイジン（SIAM 11）及びo-トルイジン（SIAM 19）の藻類毒性（S.capricornutum、72時間、EbC50）のデータはそれぞれ17.7及び30.9 mg/Lである。

Chlorella pyrenoidosaについて、o-トルイジンの96時間ErC50は55 mg/Lである。

p-トルイジンの水生種に対する慢性毒性試験は入手できない。陸生生物に対する影響に関して、以下のデータが5日間の植物根の生長試験で得られた。

Brassica campestris: 5日間LC50=102.2 mg/L（n）

p-トルイジンの微生物に対する最低毒性はOECD TG 209に従った試験で測定された。3時間EC50値の100 mg/Lが主な家庭汚水で得られた。

3つの栄養レベルについてp-トルイジンの急性試験結果が入手可能なので、評価係数1000を用いてEU技術指導書に従ったPNECaquaが導出された。入手可能な最低値L(E)C50はDaphnia magnaの48時間EC50=0.12 mg/Lであり、PNECaqua=0.12μg/Lが結果として得られた。

ばく露p-トルイジンはp-ニトロトルエンの還元により商業的に製造される。2000年において、p-トルイジンの全世界の生産量は23生産者により19,600トンであると推定された:西ヨーロッパ8,000トン/年、米国3,000トン/年、日本1,200トン/年、韓国2,400トン/年、中国3,800トン/年、並びにインド1,200トン/年。担当国において、1つの会社の全生産量は2,000-10,000トン/年である。この会社の全生産は顧客により敷地内または敷地外で化学合成中間体として用いられる。西ヨーロッパの最終用途の全量（p-トルイジンの約5700トン/年）は同様に化学合成中間体として用いられる。

担当企業では、p-トルイジンは閉鎖系において製造及び加工される。廃水処理工場からの流出濃度は20μg/L（700の希釈係数を用いれば、流入河川の濃度は0.03μg/L以下である）の検出限界以下であった。

p-トルイジンはミキサードラムに入れて、鉄道または道路輸送される。輸送される商品は関連する国内及び国際輸送規制に従って分類され、ラベルされる。担当国には他にp-トルイジンを製造する2社があるが、これらの企業からの情報は入手できない。

p-トルイジンは例えば、4B酸（顔料の中間体）の製造工程で、及び他の顔料、染料、農薬、並びに医薬品の中間体としてそのほとんどが使われている。p-トルイジンの消費者用途は知られていない。

p-トルイジンは工業生産物としてデンマーク及びノルウェーの製品登録にリストされる。フィンランド及びスウェーデンの製品登録にはリストされていない。スイス製品登録において、p-トルイジンは0.01%の濃度で消費者製品（アクリル酸エステル接着剤）中に含有されるとして登録されている。このように、（消費者製品からの放散による消費者及び環境のばく露は無視できると思われる。

トルイジン（異性体の特定はされていない）はある野菜及び液体燃料中に検出された。p-トルイジンはガソリン中に同定された。p-トルイジンはPenicillium viridicatumから、並びにPenicillium virdicatumと混合されたMethylobacterium mesophilicumの生物膜バイオフィルムから放出される。

p-トルイジンはp-ニトロトルエンの生分解の際の中間体である、例えば、昔の軍需工場において生じる。p-トルイジンは熱分解中に形成される。
1979年に、p-トルイジンはライン川で最高濃度1μg/Lが検出された。1991年に、p-トルイジンはドイツの北ライン-ウエストファリアにおけるいくつかの川では検出されなかった（検出限界：0.1-1μg/L）。2001年において、p-トルイジンは3つのインドの水サンプル中でも検出できなかった（検出限界：23ng/L）。p-トルイジンはタバコ1本当たり2.4μgの放出により大気中およびタバコの煙中に存在する。作業場での測定は「ドイツ危険物質に関する技術規則TRGS 402」に従って実施されている。ドイツでは2004年まで、職業環境について法的拘束力のある最大許容濃度（技術的濃度）1.0mg/m³がp-トルイジンについて設定されていた。しかし、危険物質に対するドイツの新しい条例で、2005年1月1日付でこの限界値はドイツの労働省によって公式に廃止された。担当国において企業によって確認されたように、作業者のばく露はこの限界値以下である。p-トルイジンのTWA（時間荷重平均値）は2ppmであり、TLVリストではA3（動物発がん性が確認され、ヒトとの関連性が不明な物質）としても分類されている。

職業的にばく露した作業者の尿中p-トルイジン濃度は一般大衆のそれと同様であった。男性と女性の間に顕著な相違が見られた。4つの試験のうちの3つで、p-トルイジンのヘモグロビン付加物レベルの上昇が非喫煙者に比べて喫煙者の血液中に認められた。

勧告と勧告の理論的根拠と勧告された追加研究の特徴

ヒトの健康

本化学物質はヒト健康に有害性を示唆する特性（急性及び亜急性毒性、メトヘモグロビン形成、皮膚感作性、眼刺激性、遺伝毒性の可能性及び発がん性の可能性）を有する。担当国により提出されたデータ（全世界生産量の10-50%を占める1国の1企業による製造と、OECD国における使用パターン関連）に基づくと、職業環境でばく露は管理されており、消費者ばく露は無視できると思われる。諸国は担当国により提出されないばく露シナリオを調査するように要望するかもしれない。本物質は現在のところ、追加研究の優先度は低い。

環境

本化学物質は環境有害性を示唆する特性（急性水生毒性[Daphnia magna]）を有する。担当国によって提出されたデータ（全世界生産量の10-50%を占める1国の1企業による製造と、OECD国における使用パターン関連）に基づいて、環境へのばく露は低いと予想される。諸国は担当国によって提出されないばく露シナリオを調査するように要望するかもしれない。本物質は現在のところ、追加研究の優先度は低い。