一般社団法人
日本化学物質安全・情報センター

SIDS in HPV programme & CCAP
SIAM 2, 04/07/1994

初期評価プロファイル (SIAP)

ベンズアルデヒド

物質名: Benzaldehyde
構造式: C7H6O
CAS No.: 100-52-7

O/W 分配係数
logPow=1.48

総合評価
環境ばく露
生分解性: 容易に生分解される

放出量と放出源
ベンズアルデヒドの製造 (Botlek):
Botlek工場における8300時間/年の製造時間から算出した大気への放出量は6個のポンプで合計275kg/年、83個のバルブで合計1382kg/年である。これは連続的に5kg/年の大気中への放出となる。貯蔵タンクには炭素フィルターが設置されており、そのため放出は非常に少ないと思われる。プロセス水は廃棄化学物質として焼却されるかまたは再利用されるので、水への放出はほとんど無い。

ベンズアルデヒドの精製 (SP-South Geleen):
プロセス水は焼却または再利用されるので、水への放出は起こらない。

ベンズアルデヒドの加工 (SP-South Geleen):
加工後に廃水はプロセス排水管と幾つかの水路を経てIAZI（集中廃水浄化施設）に放出される。DSM社Geleen工場のIAZIは住民100万人相当分の処理能力と4500m3/時の流入量を持つ。300kg/日のベンズアルデヒドがIAZI流入水に放出されると推定される。

Geleenの浄化施設からの大気への排出は少なく、トルエン: 0.013%=0.6kg/日、ベンズアルデヒド: 0.231%=11.2kg/日、ベンジルフォルメート: 0.004%=0.2kg/日。

Botlek工場では年間「パーソナルモニタリング」が芳香族炭化水素についてだけ実施され、ベンズアルデヒドについては実施されていない。

Geleenでも、パーソナル試料の測定は実施されていない。

ドイツの製造・加工工場では加工時の廃水への放出は1t/年未満である。製造時の放出量は不明である。

分配と運命
ベンズアルデヒドは易溶性で、容易に生分解される化学物質であり、そのlog Kowは1.48である。光分解のDT50はOHラジカルとの反応で9.4時間と計算された。

Mackayレベル1の計算結果は、大気、水、土壌、底質への分配がそれぞれ29%、68.8%、1.8%、4%であることを示す。
一般社団法人
日本化学物質安全・情報センター

消費者ばく露
ベンズアルデヒドは直接および間接食品添加物として認可されているので、消費者は経口経路でばく露される可能性がある。またベンズアルデヒドは香料添加物としても認可されており、幾つかの精油とくにヒヤシンス、シトロネラ、シナモン中に存在すると報告されている。樹脂の溶剤としても使用される。それゆえ消費者は経皮的に、また吸入によってもばく露される可能性がある。

職業ばく露
オランダでは製造、運搬、精製の際に職業ばく露が起こる可能性がある。職場モニタリングのデータは報告されていない。作業員から臭気と刺激に関する訴えが出されていないことから、職業ばく露はおそらく低レベルだろう。両方の閾値は非常に低い（臭気の閾値：0.05ppm, 刺激は4ppmで起こる）。

ベンズアルデヒドの職場ばく露の測定がフィンランドの幾つかの職場で実施された。塗装した金属部分をプロパンガス溶接炎により切断するときに放出される多数のアルデヒドの1つとしてベンズアルデヒドは、0.02 mg/m3の濃度と測定された。人工材料で作られた小さな帽子の内部のベンズアルデヒド濃度は0.01 mg/m3であった（Malm, 1994）。

SIDS初期評価
この評価に提出されたヒトおよび環境に関する情報はオランダにある工場のリスクを説明したものである（ロッテルダムBoklet製造工場）。USES（RIVM, VROM&WVC, 1994）を用いてリスクアセスメントが実施された。

次のように仮定した：
製造：25000トン/年、そのうち500トン/年は食品および香料添加剤として使用される。
加工：Geleen工場での現場中間体として、25000トン/年の60%を使用

ヒト
間接：ヒトへの影響だけが低レベルの毒性を示す。USESモデルから、製造量に基づくとNOAEL*と間接ばく露のあいだの安全率（MOS）は35000と計算され、ADIのMOSは1073である。加工量に基づいた間接ばく露の安全率は1.38×10^7であり、ADIのMOSは4.2×10^7である。

消費者：食品添加物としての使用からベンズアルデヒドの経口ばく露が起こる可能性があり、安息香酸総量5 mg/kg体重という確立されたADIに基づいて規制されている。

労働者：モニタリングデータは入手できなかった。労働者から臭気と刺激に関する訴えが出されていないことから、ばく露はおそらく非常に低いレベルであろう（臭気閾値：0.05ppm）。

環境
生態毒性学的データはベンズアルデヒドが魚類に対して急性毒性を持ち、ミジンコに対して有害であり、藻類に対して非常に僅かな毒性を持つことを示す。最も低い魚類のLC50に100の不確定性係数を使用す
とすると、水生生物のPNEC*は10.7 μg/Lと計算される。

製造の際には全部の廃水が再利用または焼却されるので、水への放出は無視できる。

加工の際の水への放出から、流入水中のベンズアルデヒドの濃度は300kg/(400×24m3)=2.8 mg/Lと推定される。

USESモデルを適用すると、放流水中の濃度は94 μg/Lと計算される。

32倍の希釈率を用いると、放流点から1000m離れた表面水中の濃度は2.9 μg/Lである。

USESデータによるとPEC/PNECの比は2.9/10.7=0.27である。

NOEC 132 mg/Lを使用すると、IAZIの微生物のPEC/PNEC比は<0.01と計算される。しかしながら最も低いEC50の4.85 mg/Lを使うても、廃水処理場の微生物のリスクは無い。

624 mg/kgというレタスのEC50に基づくと、土壌生物のPNECは0.6 mg/kgと計算される。

下水汚泥が農業用地に適用されるというUSESのシナリオを用いると、PEC/PNECの比は<0.01と計算される。

結論
入手した情報に基づいて、初期評価により、ヒトへの間接ばく露について懸念がなく、水圏についても懸念がないとされた。この評価は次のような理由から限定的であると考えられる：
- ばく露データの欠如：労働者と水圏勧告
- ヒトならびに環境ばく露の情報が、とくに他の製造・加工業者について必要である。

[著作権および免責事項について]
[著作権]
本資料の著作権は弊センターに帰属します。引用、転載、要約、複写（電子媒体への複写を含む）は著作権の侵害となりますので御注意下さい。

[免責事項]
本資料に掲載されている情報については、万全を期しておりますが、利用者が本情報を用いて行う一切の行為について、弊センターは何ら責任を負うものではありません。また、いかなる場合でも弊センターは、利用者が本情報を利用して被った被害、損失について、何ら責任を負いません。